惠济郑州网站建设/网站策划方案案例
目录
一.vector的介绍及使用
1.vector的介绍
2.vector的使用
1.vector的定义
2.vector iterator的使用
3. vector 空间增长问题
4.vector 增删查改
3.vector 迭代器失效问题(重点)
1. 会引起其底层空间改变的操作
2.指定位置元素的删除操作--erase
3. Linux下,g++编译器对迭代器的处理情况。
二.vector深度剖析及模拟实现
1.std::vector的核心框架接口的模拟实现
2. 使用memcpy拷贝问题
3.动态二维数组理解
一.vector的介绍及使用
1.vector的介绍
2.vector的使用
1.vector的定义
2.vector iterator的使用
注意:所有的迭代器区间都是左闭右开,且不光可以传vector的迭代器,还可以传其他类型的迭代器,只要类型可以匹配。
下面是代码演示
void Print(const vector<int>& v)
{// const对象使用const迭代器进行遍历打印vector<int>::const_iterator it = v.begin();while (it != v.end()){cout << *it << " ";++it;}cout << endl;
}
3. vector 空间增长问题
// 如果已经确定vector中要存储元素大概个数,可以提前将空间设置足够
// 就可以避免边插入边扩容导致效率低下的问题了
void TestVector()
{vector<int> v;size_t sz = v.capacity();v.reserve(100); // 提前将容量设置好,可以避免一遍插入一遍扩容cout << "making bar grow:\n";for (int i = 0; i < 100; ++i) {v.push_back(i);if (sz != v.capacity()){sz = v.capacity();cout << "capacity changed: " << sz << '\n';}}
}
通过测试发现提前开好了空间,capacity已经变成了100。
4.vector 增删查改
重要的函数接口参数
void push_back (const value_type& val);void pop_back();template <class InputIterator, class T>
InputIterator find (InputIterator first, InputIterator last, const T& val);iterator insert (iterator position, const value_type& val);
void insert (iterator position, size_type n, const value_type& val);iterator erase (iterator position);iterator erase (iterator first, iterator last);
3.vector 迭代器失效问题(重点)
迭代器的使用特别广泛,迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。
1. 会引起其底层空间改变的操作
比如:resize、reserve、insert、assign、push_back等,都有可能造成迭代器失效
#include <iostream>
using namespace std;
#include <vector>
int main()
{vector<int> v{1,2,3,4,5,6};auto it = v.begin();
// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容// v.resize(100, 8);// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变// v.reserve(100);// 插入元素期间,可能会引起扩容,而导致原空间被释放// v.insert(v.begin(), 0);// v.push_back(8);// 给vector重新赋值,可能会引起底层容量改变v.assign(100, 8);while(it != v.end()){cout<< *it << " " ;++it;}cout<<endl;return 0;
}
2.指定位置元素的删除操作--erase
#include <iostream>
using namespace std;
#include <vector>
int main()
{int a[] = { 1, 2, 3, 4 };vector<int> v(a, a + sizeof(a) / sizeof(int));// 使用find查找3所在位置的iteratorvector<int>::iterator pos = find(v.begin(), v.end(), 3);// 删除pos位置的数据,导致pos迭代器失效。v.erase(pos);cout << *pos << endl; // 此处会导致非法访问return 0;
}
#include <iostream>
using namespace std;
#include <vector>
int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)v.erase(it);++it;} return 0;
}int main()
{vector<int> v{ 1, 2, 3, 4 };auto it = v.begin();while (it != v.end()){if (*it % 2 == 0)it = v.erase(it); //返回一个迭代器,指向删除数据的下一个位置else++it;}return 0;
}
第一个代码是错误的,会造成迭代器失效,且其删除逻辑是不对的。以上面的代码为例,当程序删除“2”以后,pos位置会变成“3”,然后it++,迭代器就指向了4,就错过了对3的判断,且最后一个是偶数4,删除以后,迭代器会超过_finish,导致it永远不会==v.end()。
3. Linux下,g++编译器对迭代器的处理情况。
// 1. 扩容之后,迭代器已经失效了,程序虽然可以运行,但是运行结果已经不对了
int main()
{vector<int> v{1,2,3,4,5};auto it = v.begin();cout << "扩容之前,vector的容量为: " << v.capacity() << endl;// 通过reserve将底层空间设置为100,目的是为了让vector的迭代器失效 v.reserve(100);cout << "扩容之后,vector的容量为: " << v.capacity() << endl;// 经过上述reserve之后,it迭代器肯定会失效,在vs下程序就直接崩溃了,但是linux下不会// 虽然可能运行,但是输出的结果是不对的while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}
输出:
扩容之前,vector的容量为: 5
扩容之后,vector的容量为: 100
0 2 3 4 5 409 1 2 3 4 5// 2. erase删除任意位置代码后,linux下迭代器并没有失效
// 因为空间还是原来的空间,后序元素往前搬移了,it的位置还是有效的
#include <vector>
#include <algorithm>
int main()
{vector<int> v{1,2,3,4,5};vector<int>::iterator it = find(v.begin(), v.end(), 3);v.erase(it);
cout << *it << endl;while(it != v.end()){cout << *it << " ";++it;}cout << endl;return 0;
}程序可以正常运行,并打印:
4
4 5// 3: erase删除的迭代器如果是最后一个元素,删除之后it已经超过end
// 此时迭代器是无效的,++it导致程序崩溃
int main()
{vector<int> v{1,2,3,4,5};// vector<int> v{1,2,3,4,5,6};auto it = v.begin();while(it != v.end()){if(*it % 2 == 0)v.erase(it);++it;}for(auto e : v)cout << e << " ";cout << endl;return 0;
}
从上述三个例子中可以看到:Linux下,g++编译器对迭代器失效的检测并不是非常严格,处理也没有vs下极端,SGI STL中,迭代器失效后,代码并不一定会崩溃,但是运行结果肯定不对,如果it不在begin和end范围内,肯定会崩溃的。
二.vector深度剖析及模拟实现

1.std::vector的核心框架接口的模拟实现
#pragma once#include <iostream>
using namespace std;
#include <assert.h>namespace Kevin
{template<class T>class vector{public:// Vector的迭代器是一个原生指针typedef T* iterator;typedef const T* const_iterator;///// 构造和销毁vector(): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){}vector(size_t n, const T& value = T()): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){reserve(n);while (n--){push_back(value);}}/** 理论上将,提供了vector(size_t n, const T& value = T())之后* vector(int n, const T& value = T())就不需要提供了,但是对于:* vector<int> v(10, 5);* 编译器在编译时,认为T已经被实例化为int,而10和5编译器会默认其为int类型* 就不会走vector(size_t n, const T& value = T())这个构造方法,* 最终选择的是:vector(InputIterator first, InputIterator last)* 因为编译器觉得区间构造两个参数类型一致,因此编译器就会将InputIterator实例化为int* 但是10和5根本不是一个区间,编译时就报错了* 故需要增加该构造方法*/vector(int n, const T& value = T()): _start(new T[n]), _finish(_start+n), _endOfStorage(_finish){for (int i = 0; i < n; ++i){_start[i] = value;}}// 若使用iterator做迭代器,会导致初始化的迭代器区间[first,last)只能是vector的迭代器// 重新声明迭代器,迭代器区间[first,last)可以是任意容器的迭代器template<class InputIterator>vector(InputIterator first, InputIterator last){while (first != last){push_back(*first);++first;}}vector(const vector<T>& v): _start(nullptr), _finish(nullptr), _endOfStorage(nullptr){reserve(v.capacity());iterator it = begin();const_iterator vit = v.cbegin();while (vit != v.cend()){*it++ = *vit++;}_finish = it;}vector<T>& operator=(vector<T> v){swap(v);return *this;}~vector(){if (_start){delete[] _start;_start = _finish = _endOfStorage = nullptr;}}/// 迭代器相关iterator begin(){return _start;}iterator end(){return _finish;}const_iterator cbegin() const{return _start;}const_iterator cend() const{return _finish;}//// 容量相关size_t size() const { return _finish - _start; }size_t capacity() const { return _endOfStorage - _start; }bool empty() const { return _start == _finish; }void reserve(size_t n){if (n > capacity()){size_t oldSize = size();// 1. 开辟新空间T* tmp = new T[n];// 2. 拷贝元素// 这里直接使用memcpy会有问题吗?同学们思考下//if (_start)// memcpy(tmp, _start, sizeof(T)*size);if (_start){for (size_t i = 0; i < oldSize; ++i)tmp[i] = _start[i];// 3. 释放旧空间delete[] _start;}_start = tmp;_finish = _start + oldSize;_endOfStorage = _start + n;}}void resize(size_t n, const T& value = T()){// 1.如果n小于当前的size,则数据个数缩小到nif (n <= size()){_finish = _start + n;return;}// 2.空间不够则增容if (n > capacity())reserve(n);// 3.将size扩大到niterator it = _finish;_finish = _start + n;while (it != _finish){*it = value;++it;}}///// 元素访问T& operator[](size_t pos) { assert(pos < size());return _start[pos]; }const T& operator[](size_t pos)const { assert(pos < size());return _start[pos]; }T& front(){return *_start;}const T& front()const{return *_start;}T& back(){return *(_finish - 1);}const T& back()const{return *(_finish - 1);}/// vector的修改操作void push_back(const T& x) { insert(end(), x); }void pop_back() { erase(end() - 1); }void swap(vector<T>& v){std::swap(_start, v._start);std::swap(_finish, v._finish);std::swap(_endOfStorage, v._endOfStorage);}iterator insert(iterator pos, const T& x){assert(pos <= _finish);// 空间不够先进行增容if (_finish == _endOfStorage){//size_t size = size();size_t newCapacity = (0 == capacity()) ? 1 : capacity() * 2;reserve(newCapacity);// 如果发生了增容,需要重置pospos = _start + size();}iterator end = _finish - 1;while (end >= pos){*(end + 1) = *end;--end;}*pos = x;++_finish;return pos;}// 返回删除数据的下一个数据// 方便解决:一边遍历一边删除的迭代器失效问题iterator erase(iterator pos){// 挪动数据进行删除iterator begin = pos + 1;while (begin != _finish) {*(begin - 1) = *begin;++begin;}--_finish;return pos;}private:iterator _start; // 指向数据块的开始iterator _finish; // 指向有效数据的尾iterator _endOfStorage; // 指向存储容量的尾};
}
2. 使用memcpy拷贝问题
int main()
{bite::vector<bite::string> v;v.push_back("1111");v.push_back("2222");v.push_back("3333");return 0;
}
假设模拟实现的vector中的reserve接口中,使用memcpy进行的拷贝,上面的代码会有什么问题吗?


如果拷贝的是自定义类型的元素,memcpy既高效又不会出错,但如果拷贝的是自定义类型元素,并且自定义类型元素中涉及到资源管理时,就会出错,因为memcpy的拷贝实际是浅拷贝。
结论:如果对象中涉及到资源管理时,千万不能使用memcpy进行对象之间的拷贝,因为memcpy是 浅拷贝,否则可能会引起内存泄漏甚至程序崩溃。
3.动态二维数组理解
vector<vector<int>> vv(n);
完成元素填充后,如下图: