2019独角兽企业重金招聘Python工程师标准>>>
java中的几种锁:synchronized,ReentrantLock,ReentrantReadWriteLock已基本可以满足编程需求,但其粒度都太大,同一时刻只有一个线程能进入同步块,这对于某些高并发的场景并不适用。本文实现了一个基于KEY(主键)的互斥锁,具有更细的粒度,在缓存或其他基于KEY的场景中有很大的用处。下面将讲解这个锁的设计和实现
(关于这个锁的讨论贴:KeyLock讨论贴-CSDN)
设想这么一个场景:转账
private int[] accounts; // 账户数组,其索引为账户ID,内容为金额public boolean transfer(int from, int to, int money) {if (accounts[from] < money)return false;accounts[from] -= money;accounts[to] += money;return true;}
从from中转出金额到to中。可能同时会有很多个线程同时调用这个转账方法,为保证原子性,保证金额不会出错,必须为这个方法加个锁,防止对共享变量accounts的并发修改。
加锁后的代码如下:
private int[] accounts; // 账户数组,其索引为账户ID,内容为金额private Lock lock = new ReentrantLock();public boolean transfer(int from, int to, int money) {lock.lock();try {if (accounts[from] < money)return false;accounts[from] -= money;accounts[to] += money;return true;} finally {lock.unlock();}}
好了,加锁后这个代码就能保证金额不出错了。但问题又出现了,一次只能执行一个转账过程!意思就是A给B转账的时候,C要给D转账也得等A给B转完了才能开始转。这就有点扯蛋了,就像只有一个柜台,所有人必须排队等前面的处理完了才能到自己,效率太低。
解决这种情况有一个方案:A给B转账的时候只锁定A和B的账户,使其转账期间不能再有其他针对A和B账户的操作,但其他账户的操作可以并行发生。类似于如下场景:
public boolean transfer(int from, int to, int money) {lock.lock(from, to);try {if (accounts[from] < money)return false;accounts[from] -= money;accounts[to] += money;return true;} finally {lock.unlock(from, to);}}
但很显然,JAVA并没有为我们提供这样的锁(也有可能是我没找到。。。)
于是,就在这样的需求下我花了整一天来实现了这个锁——KeyLock(代码量很短,但多线程的东西真的很让人头疼)
不同于synchronized等锁,KeyLock是对所需处理的数据的KEY(主键)进行加锁,只要是对不同key操作,其就可以并行处理,大大提高了线程的并行度(最后有几个锁的对比测试)
总结下就是:对相同KEY操作的线程互斥,对不同KEY操作的线程可以并行
KeyLock有如下几个特性:
1、细粒度,高并行性
2、可重入
3、公平锁
4、加锁开销比ReentrantLock大,适用于处理耗时长、key范围大的场景
KeyLock代码如下(注释很少,因为我也不知道该怎么写清楚,能看懂就看,懒得看的直接用就行):
public class KeyLock<K> {// 保存所有锁定的KEY及其信号量private final ConcurrentMap<K, Semaphore> map = new ConcurrentHashMap<K, Semaphore>();// 保存每个线程锁定的KEY及其锁定计数private final ThreadLocal<Map<K, LockInfo>> local = new ThreadLocal<Map<K, LockInfo>>() {@Overrideprotected Map<K, LockInfo> initialValue() {return new HashMap<K, LockInfo>();}};/*** 锁定key,其他等待此key的线程将进入等待,直到调用{@link #unlock(K)}* 使用hashcode和equals来判断key是否相同,因此key必须实现{@link #hashCode()}和* {@link #equals(Object)}方法* * @param key*/public void lock(K key) {if (key == null)return;LockInfo info = local.get().get(key);if (info == null) {Semaphore current = new Semaphore(1);current.acquireUninterruptibly();Semaphore previous = map.put(key, current);if (previous != null)previous.acquireUninterruptibly();local.get().put(key, new LockInfo(current));} else {info.lockCount++;}}/*** 释放key,唤醒其他等待此key的线程* @param key*/public void unlock(K key) {if (key == null)return;LockInfo info = local.get().get(key);if (info != null && --info.lockCount == 0) {info.current.release();map.remove(key, info.current);local.get().remove(key);}}/*** 锁定多个key* 建议在调用此方法前先对keys进行排序,使用相同的锁定顺序,防止死锁发生* @param keys*/public void lock(K[] keys) {if (keys == null)return;for (K key : keys) {lock(key);}}/*** 释放多个key* @param keys*/public void unlock(K[] keys) {if (keys == null)return;for (K key : keys) {unlock(key);}}private static class LockInfo {private final Semaphore current;private int lockCount;private LockInfo(Semaphore current) {this.current = current;this.lockCount = 1;}}
}
KeyLock使用示例:
private int[] accounts;private KeyLock<Integer> lock = new KeyLock<Integer>();public boolean transfer(int from, int to, int money) {Integer[] keys = new Integer[] {from, to};Arrays.sort(keys); //对多个key进行排序,保证锁定顺序防止死锁lock.lock(keys);try {//处理不同的from和to的线程都可进入此同步块if (accounts[from] < money)return false;accounts[from] -= money;accounts[to] += money;return true;} finally {lock.unlock(keys);}}
好,工具有了,接下来就是测试了,为了测出并行度,我把转账过程延长了,加了个sleep(2),使每个转账过程至少要花2毫秒(这只是个demo,真实环境下对数据库操作也很费时)。
测试代码如下:
//场景:多线程并发转账
public class Test {private final int[] account; // 账户数组,其索引为账户ID,内容为金额public Test(int count, int money) {account = new int[count];Arrays.fill(account, money);}boolean transfer(int from, int to, int money) {if (account[from] < money)return false;account[from] -= money;try {Thread.sleep(2);} catch (Exception e) {}account[to] += money;return true;}int getAmount() {int result = 0;for (int m : account)result += m;return result;}public static void main(String[] args) throws Exception {int count = 100; //账户个数int money = 10000; //账户初始金额int threadNum = 8; //转账线程数int number = 10000; //转账次数int maxMoney = 1000; //随机转账最大金额Test test = new Test(count, money);//不加锁
// Runner runner = test.new NonLockRunner(maxMoney, number);//加synchronized锁
// Runner runner = test.new SynchronizedRunner(maxMoney, number);//加ReentrantLock锁
// Runner runner = test.new ReentrantLockRunner(maxMoney, number);//加KeyLock锁Runner runner = test.new KeyLockRunner(maxMoney, number);Thread[] threads = new Thread[threadNum];for (int i = 0; i < threadNum; i++)threads[i] = new Thread(runner, "thread-" + i);long begin = System.currentTimeMillis();for (Thread t : threads)t.start();for (Thread t : threads)t.join();long time = System.currentTimeMillis() - begin;System.out.println("类型:" + runner.getClass().getSimpleName());System.out.printf("耗时:%dms\n", time);System.out.printf("初始总金额:%d\n", count * money);System.out.printf("终止总金额:%d\n", test.getAmount());}// 转账任务abstract class Runner implements Runnable {final int maxMoney;final int number;private final Random random = new Random();private final AtomicInteger count = new AtomicInteger();Runner(int maxMoney, int number) {this.maxMoney = maxMoney;this.number = number;}@Overridepublic void run() {while(count.getAndIncrement() < number) {int from = random.nextInt(account.length);int to;while ((to = random.nextInt(account.length)) == from);int money = random.nextInt(maxMoney);doTransfer(from, to, money);}}abstract void doTransfer(int from, int to, int money);}// 不加锁的转账class NonLockRunner extends Runner {NonLockRunner(int maxMoney, int number) {super(maxMoney, number);}@Overridevoid doTransfer(int from, int to, int money) {transfer(from, to, money);}}// synchronized的转账class SynchronizedRunner extends Runner {SynchronizedRunner(int maxMoney, int number) {super(maxMoney, number);}@Overridesynchronized void doTransfer(int from, int to, int money) {transfer(from, to, money);}}// ReentrantLock的转账class ReentrantLockRunner extends Runner {private final ReentrantLock lock = new ReentrantLock();ReentrantLockRunner(int maxMoney, int number) {super(maxMoney, number);}@Overridevoid doTransfer(int from, int to, int money) {lock.lock();try {transfer(from, to, money);} finally {lock.unlock();}}}// KeyLock的转账class KeyLockRunner extends Runner {private final KeyLock<Integer> lock = new KeyLock<Integer>();KeyLockRunner(int maxMoney, int number) {super(maxMoney, number);}@Overridevoid doTransfer(int from, int to, int money) {Integer[] keys = new Integer[] {from, to};Arrays.sort(keys);lock.lock(keys);try {transfer(from, to, money);} finally {lock.unlock(keys);}}}
}
最最重要的测试结果:
(8线程对100个账户随机转账总共10000次):
类型:NonLockRunner(不加锁)
耗时:2482ms
初始总金额:1000000
终止总金额:998906(无法保证原子性)
类型:SynchronizedRunner(加synchronized锁)
耗时:20872ms
初始总金额:1000000
终止总金额:1000000
类型:ReentrantLockRunner(加ReentrantLock锁)
耗时:21588ms
初始总金额:1000000
终止总金额:1000000
类型:KeyLockRunner(加KeyLock锁)
耗时:2831ms
初始总金额:1000000
终止总金额:1000000
转载:http://blog.csdn.net/icebamboo_moyun/article/details/9391915