当前位置: 首页 > news >正文

在大学里网站建设属于什么专业/网络营销经典成功案例

在大学里网站建设属于什么专业,网络营销经典成功案例,手机网站空间,设计师个人网站欣赏 中国该楼层疑似违规已被系统折叠 隐藏此楼查看此楼最近学pytorch,看了莫烦CNN的视频,那个代码是数字识别,用minist数据集训练出识别0-9的手写体数字。请问训练好之后,怎么导入其他的图片测试模型是否准确呢?谢谢各位大神qw…

该楼层疑似违规已被系统折叠 隐藏此楼查看此楼

最近学pytorch,看了莫烦CNN的视频,那个代码是数字识别,用minist数据集训练出识别0-9的手写体数字。请问训练好之后,怎么导入其他的图片测试模型是否准确呢?

谢谢各位大神qwq!

源代码如下:

# library

# standard library

import os

# third-party library

import torch

import skimage

import numpy as np

import torch.nn as nn

import torch.utils.data as Data

import torchvision

import matplotlib.pyplot as plt

from torchvision import transforms

# torch.manual_seed(1) # reproducible

# Hyper Parameters

EPOCH = 1 # train the training data n times, to save time, we just train 1 epoch

BATCH_SIZE = 50

LR = 0.001 # learning rate

DOWNLOAD_MNIST = False

# Mnist digits dataset

if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):

# not mnist dir or mnist is empyt dir

DOWNLOAD_MNIST = True

train_data = torchvision.datasets.MNIST(

root='./mnist/',

train=True, # this is training data

transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to

# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]

download=DOWNLOAD_MNIST,

)

# plot one example

print(train_data.train_data.size()) # (60000, 28, 28)

print(train_data.train_labels.size()) # (60000)

plt.imshow(train_data.train_data[0].numpy(), cmap='gray')

plt.title('%i' % train_data.train_labels[0])

plt.show()

# Data Loader for easy mini-batch return in training, the image batch shape will be (50, 1, 28, 28)

train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# pick 2000 samples to speed up testing

test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)

test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)

test_y = test_data.test_labels[:2000]

class CNN(nn.Module):

def __init__(self):

super(CNN, self).__init__()

self.conv1 = nn.Sequential( # input shape (1, 28, 28)

nn.Conv2d(

in_channels=1, # input height

out_channels=16, # n_filters

kernel_size=5, # filter size

stride=1, # filter movement/step

padding=2, # if want same width and length of this image after con2d, padding=(kernel_size-1)/2 if stride=1

), # output shape (16, 28, 28)

nn.ReLU(), # activation

nn.MaxPool2d(kernel_size=2), # choose max value in 2x2 area, output shape (16, 14, 14)

)

self.conv2 = nn.Sequential( # input shape (16, 14, 14)

nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14)

nn.ReLU(), # activation

nn.MaxPool2d(2), # output shape (32, 7, 7)

)

self.out = nn.Linear(32 * 7 * 7, 10) # fully connected layer, output 10 classes

def forward(self, x):

x = self.conv1(x)

x = self.conv2(x)

x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7)

output = self.out(x)

return output, x # return x for visualization

cnn = CNN()

print(cnn) # net architecture

optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters

loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted

# following function (plot_with_labels) is for visualization, can be ignored if not interested

from matplotlib import cm

try: from sklearn.manifold import TSNE; HAS_SK = True

except: HAS_SK = False; print('Please install sklearn for layer visualization')

def plot_with_labels(lowDWeights, labels):

plt.cla()

X, Y = lowDWeights[:, 0], lowDWeights[:, 1]

for x, y, s in zip(X, Y, labels):

c = cm.rainbow(int(255 * s / 9)); plt.text(x, y, s, backgroundcolor=c, fontsize=9)

plt.xlim(X.min(), X.max()); plt.ylim(Y.min(), Y.max()); plt.title('Visualize last layer'); plt.show(); plt.pause(0.01)

plt.ion()

# training and testing

for epoch in range(EPOCH):

for step, (b_x, b_y) in enumerate(train_loader): # gives batch data, normalize x when iterate train_loader

output = cnn(b_x)[0] # cnn output

loss = loss_func(output, b_y) # cross entropy loss

optimizer.zero_grad() # clear gradients for this training step

loss.backward() # backpropagation, compute gradients

optimizer.step() # apply gradients

if step % 50 == 0:

test_output, last_layer = cnn(test_x)

pred_y = torch.max(test_output, 1)[1].data.squeeze().numpy()

accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))

print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)

if HAS_SK:

# Visualization of trained flatten layer (T-SNE)

tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)

plot_only = 500

low_dim_embs = tsne.fit_transform(last_layer.data.numpy()[:plot_only, :])

labels = test_y.numpy()[:plot_only]

plot_with_labels(low_dim_embs, labels)

plt.ioff()

# print 10 predictions from test data

test_output, _ = cnn(test_x[:10])

pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()

print(pred_y, 'prediction number')

print(test_y[:10].numpy(), 'real number')

http://www.jmfq.cn/news/5013667.html

相关文章:

  • wordpress 宅男猫网站/二级域名网站免费建站
  • 通过阿里云建设企业网站/网站域名在哪里查询
  • 调用wordpress的文章编辑器/南京seo按天计费
  • 做百度药材种苗网站/刺激广告
  • 网站建设发票/百度推广一个关键词多少钱
  • 如何设计营销 网站建设/百度资源站长平台
  • 公司网站设计规划/青岛seo网站管理
  • 武汉城市建设学院招生网站/湖南企业竞价优化
  • 企业制作网站公司/公司网站制作模板
  • 做网站导航cms/如何推广seo
  • 响应式网站和展示式区别/sem是什么仪器
  • 网站微信推广方案/网站查询域名ip
  • 调研报告 政府网站建设/国内产女装一线二线品牌知乎
  • 中远智达网站建设/网站优化分析
  • 网站公司怎么做的好/推广软件的app
  • 台州网站建设费用/上海搜索引擎优化1
  • 深圳网站设计制作建设/seo实战培训课程
  • 新乡网站制作/网站页面关键词优化
  • 司机找事做那个网站靠谱/计算机培训机构排名前十
  • 重庆网站平台/北京网站建设东轩seo
  • 怎么创建网站相册/seo点击排名工具有用吗
  • 禹州做网站的公司/seo如何提升排名收录
  • 北京所有公司名单/seo外包公司需要什么
  • 怎么做能收费的视频网站/宁波关键词优化时间
  • 怎么查网站是哪家制作公司做的/百度客户管理系统登录
  • 连云港网站制作/seo快速排名培训
  • 怎么做网站链接支付/seo实战培训中心
  • 全国今日生猪价格涨跌表价格/厦门最快seo
  • wplounge wordpress主题/优化seo哪家好
  • WordPress网站加载时间/360站长