当前位置: 首页 > news >正文

响应式网站 html/网站如何优化推广

响应式网站 html,网站如何优化推广,wordpress 滚动通知,石家庄新闻广播本节大体介绍了make_one_rel中的make_rel_from_joinlist->standard_join_search函数的实现逻辑,该函数是PG使用动态规划算法构造连接路径的实现。 一、源码解读 上节已解读了make_rel_from_joinlist->standard_join_search函数的主实现逻辑,下面重点介绍该函数…

本节大体介绍了make_one_rel中的make_rel_from_joinlist->standard_join_search函数的实现逻辑,该函数是PG使用动态规划算法构造连接路径的实现。

一、源码解读

上节已解读了make_rel_from_joinlist->standard_join_search函数的主实现逻辑,下面重点介绍该函数中的join_search_one_level函数.

 /** join_search_one_level*    Consider ways to produce join relations containing exactly 'level'*    jointree items.  (This is one step of the dynamic-programming method*    embodied in standard_join_search.)  Join rel nodes for each feasible*    combination of lower-level rels are created and returned in a list.*    Implementation paths are created for each such joinrel, too.*    规划如何生成包含匹配Leve(比如2个关系的连接/3个关系的连接等)连接关系。*    (这是在standard_join_search中体现的动态规划算法的一个步骤。)*    为较低Leve的关系创建新的连接关系亦即访问路径,通过链表的方式返回(root->join_rel_level)。 ** level: level of rels we want to make this time* root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items* level:关系的level,比如是2个关系还是3个关系的连接** The result is returned in root->join_rel_level[level].* 结果通过root->join_rel_level[level]*/voidjoin_search_one_level(PlannerInfo *root, int level){List      **joinrels = root->join_rel_level;ListCell   *r;int         k;Assert(joinrels[level] == NIL);/* Set join_cur_level so that new joinrels are added to proper list */root->join_cur_level = level;//当前的Level/** First, consider left-sided and right-sided plans, in which rels of* exactly level-1 member relations are joined against initial relations.* We prefer to join using join clauses, but if we find a rel of level-1* members that has no join clauses, we will generate Cartesian-product* joins against all initial rels not already contained in it.* 首先,规划left-sided和right-sided的计划,这些计划已由初始关系连接为level-1级的Relation.* PG使用连接条件进行连接,但如果发现level-1成员中没有连接条件,那么PG将会* 为未包含此条件的初始关系生成笛卡尔积.*/foreach(r, joinrels[level - 1])//遍历上一级生成的关系{RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);//获取上一级的RelOptInfoif (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||has_join_restriction(root, old_rel))//存在连接条件{/** There are join clauses or join order restrictions relevant to* this rel, so consider joins between this rel and (only) those* initial rels it is linked to by a clause or restriction.* 存在与此rel相关的连接条件或连接顺序限制,* 因此仅规划此rel与通过条件子句或约束条件链接在一起的初始rels.** At level 2 this condition is symmetric, so there is no need to* look at initial rels before this one in the list; we already* considered such joins when we were at the earlier rel.  (The* mirror-image joins are handled automatically by make_join_rel.)* In later passes (level > 2), we join rels of the previous level* to each initial rel they don't already include but have a join* clause or restriction with.* leve=2时,这个条件是对称的,所以不需要在关注链表中此rel前的rels;* 在处理在此rel前的rels时,已处理这样的连接.(make_join_rel函数自动处理镜像连接)。* level>2时,PG将上一级别生成的rels逐一与尚未处理的初始rel(存在连接条件或约束条件)进行连接.**/ListCell   *other_rels;if (level == 2)     /* consider remaining initial rels */other_rels = lnext(r);//level = 2,只需关注此rel之后的relelse                /* consider all initial rels */other_rels = list_head(joinrels[1]);//level > 2,从第1级开始尝试make_rels_by_clause_joins(root,old_rel,other_rels);//创建连接}else//不存在连接条件{/** Oops, we have a relation that is not joined to any other* relation, either directly or by join-order restrictions.* Cartesian product time.* 有一个relation与其他relation没有连接条件(直接或通过join-order约束)* 笛卡尔时间到了! ** We consider a cartesian product with each not-already-included* initial rel, whether it has other join clauses or not.  At* level 2, if there are two or more clauseless initial rels, we* will redundantly consider joining them in both directions; but* such cases aren't common enough to justify adding complexity to* avoid the duplicated effort.* 考察每一个尚未处理的初始rel(无论其是否有约束条件).* 在level 2,如存在2个或以上的无条件初始rels,PG可能会出现重复处理的情况.*/make_rels_by_clauseless_joins(root,old_rel,list_head(joinrels[1]));//创建无条件连接}}/** Now, consider "bushy plans" in which relations of k initial rels are* joined to relations of level-k initial rels, for 2 <= k <= level-2.* 现在考察"稠密计划",其中k level的rels与level - k的rel想连接.其中:2 <= k <= level-2** We only consider bushy-plan joins for pairs of rels where there is a* suitable join clause (or join order restriction), in order to avoid* unreasonable growth of planning time.* 这里只考虑存在连接条件(或者join-order限制)的关系对,以避免计划时间的大幅增加*/for (k = 2;; k++){int         other_level = level - k;/** Since make_join_rel(x, y) handles both x,y and y,x cases, we only* need to go as far as the halfway point.*/if (k > other_level)break;foreach(r, joinrels[k]){RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);ListCell   *other_rels;ListCell   *r2;/** We can ignore relations without join clauses here, unless they* participate in join-order restrictions --- then we might have* to force a bushy join plan.*/if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&!has_join_restriction(root, old_rel))continue;if (k == other_level)other_rels = lnext(r);  /*同一层次,只考虑余下的rel,only consider remaining rels */elseother_rels = list_head(joinrels[other_level]);//不同层次,尝试所有的for_each_cell(r2, other_rels){RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);if (!bms_overlap(old_rel->relids, new_rel->relids))//relids不存在包含关系{/** OK, we can build a rel of the right level from this* pair of rels.  Do so if there is at least one relevant* join clause or join order restriction.*/if (have_relevant_joinclause(root, old_rel, new_rel) ||have_join_order_restriction(root, old_rel, new_rel))//存在连接条件或者join-order约束{(void) make_join_rel(root, old_rel, new_rel);//创建连接}}}}}/*----------* Last-ditch effort: if we failed to find any usable joins so far, force* a set of cartesian-product joins to be generated.  This handles the* special case where all the available rels have join clauses but we* cannot use any of those clauses yet.  This can only happen when we are* considering a join sub-problem (a sub-joinlist) and all the rels in the* sub-problem have only join clauses with rels outside the sub-problem.* An example is**      SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...*      WHERE a.w = c.x and b.y = d.z;** If the "a INNER JOIN b" sub-problem does not get flattened into the* upper level, we must be willing to make a cartesian join of a and b;* but the code above will not have done so, because it thought that both* a and b have joinclauses.  We consider only left-sided and right-sided* cartesian joins in this case (no bushy).*----------*/if (joinrels[level] == NIL){/** This loop is just like the first one, except we always call* make_rels_by_clauseless_joins().*/foreach(r, joinrels[level - 1]){RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);make_rels_by_clauseless_joins(root,old_rel,list_head(joinrels[1]));}/*----------* When special joins are involved, there may be no legal way* to make an N-way join for some values of N.  For example consider** SELECT ... FROM t1 WHERE*   x IN (SELECT ... FROM t2,t3 WHERE ...) AND*   y IN (SELECT ... FROM t4,t5 WHERE ...)** We will flatten this query to a 5-way join problem, but there are* no 4-way joins that join_is_legal() will consider legal.  We have* to accept failure at level 4 and go on to discover a workable* bushy plan at level 5.** However, if there are no special joins and no lateral references* then join_is_legal() should never fail, and so the following sanity* check is useful.*----------*/if (joinrels[level] == NIL &&root->join_info_list == NIL &&!root->hasLateralRTEs)elog(ERROR, "failed to build any %d-way joins", level);}}//------------------------------------------------------------------- has_join_restriction/** has_join_restriction*      Detect whether the specified relation has join-order restrictions,*      due to being inside an outer join or an IN (sub-SELECT),*      or participating in any LATERAL references or multi-rel PHVs.*      判断传入的relation是否含有join-order限制条件.存在于外连接/IN(sub-SELECT)子查询/LATERAL依赖/多关系PHVs** Essentially, this tests whether have_join_order_restriction() could* succeed with this rel and some other one.  It's OK if we sometimes* say "true" incorrectly.  (Therefore, we don't bother with the relatively* expensive has_legal_joinclause test.)*/static boolhas_join_restriction(PlannerInfo *root, RelOptInfo *rel){ListCell   *l;if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)return true;//存在lateralforeach(l, root->placeholder_list){PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&!bms_equal(rel->relids, phinfo->ph_eval_at))return true;//PHVs}foreach(l, root->join_info_list){SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);/* ignore full joins --- other mechanisms preserve their ordering */if (sjinfo->jointype == JOIN_FULL)continue;//不考虑全外连接/* ignore if SJ is already contained in rel */if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&bms_is_subset(sjinfo->min_righthand, rel->relids))continue;//SJ在rel中,不考虑/* restricted if it overlaps LHS or RHS, but doesn't contain SJ */if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||bms_overlap(sjinfo->min_righthand, rel->relids))return true;}return false;}//------------------------------------------------------------------- make_rels_by_clause_joins/** make_rels_by_clause_joins*    Build joins between the given relation 'old_rel' and other relations*    that participate in join clauses that 'old_rel' also participates in*    (or participate in join-order restrictions with it).*    The join rels are returned in root->join_rel_level[join_cur_level].*   创建old_rel和其他rel的连接(两者存在连接条件)** Note: at levels above 2 we will generate the same joined relation in* multiple ways --- for example (a join b) join c is the same RelOptInfo as* (b join c) join a, though the second case will add a different set of Paths* to it.  This is the reason for using the join_rel_level mechanism, which* automatically ensures that each new joinrel is only added to the list once.* 注意:在level > 2时,PG会通过多种方式生成同样的连接rel(joined relation).* 比如:(a join b) join c与(b join c) join a最终结果是一样的RelOptInfo,虽然第* 2种方法会添加一些不同的访问路径集合在其中.* 这其实是使用join_rel_level的原因,确保每个新joinrel只加入到合适的链表中** 'old_rel' is the relation entry for the relation to be joined* 'other_rels': the first cell in a linked list containing the other* rels to be considered for joining* old-rel:需要连接的rel* other-rel:候选关系链表中的的第一个cell** Currently, this is only used with initial rels in other_rels, but it* will work for joining to joinrels too.* 看起来似乎只对other_rels中的初始rels有用,但其实对于连接生成的joinrels同样会生效.*/static voidmake_rels_by_clause_joins(PlannerInfo *root,RelOptInfo *old_rel,ListCell *other_rels){ListCell   *l;for_each_cell(l, other_rels)//遍历链表{RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);//获取其中的RelOptInfoif (!bms_overlap(old_rel->relids, other_rel->relids) &&(have_relevant_joinclause(root, old_rel, other_rel) ||have_join_order_restriction(root, old_rel, other_rel)))//reldis不同而且存在连接关系&连接顺序约束{(void) make_join_rel(root, old_rel, other_rel);//创建连接}}}//---------------------------------------------------- have_relevant_joinclause/** have_relevant_joinclause*      Detect whether there is a joinclause that involves*      the two given relations.*      给定两个relations,检查两者是否存在连接条件** Note: the joinclause does not have to be evaluable with only these two* relations.  This is intentional.  For example consider*      SELECT * FROM a, b, c WHERE a.x = (b.y + c.z)* If a is much larger than the other tables, it may be worthwhile to* cross-join b and c and then use an inner indexscan on a.x.  Therefore* we should consider this joinclause as reason to join b to c, even though* it can't be applied at that join step.* 注意:连接条件不一定是等值连接,*      比如:SELECT * FROM a, b, c WHERE a.x = (b.y + c.z),只要a.x大于b.y + c.z即可*/boolhave_relevant_joinclause(PlannerInfo *root,RelOptInfo *rel1, RelOptInfo *rel2){bool        result = false;List       *joininfo;Relids      other_relids;ListCell   *l;/** We could scan either relation's joininfo list; may as well use the* shorter one.* 获取relation中joininfo链表较少的那个*/if (list_length(rel1->joininfo) <= list_length(rel2->joininfo)){joininfo = rel1->joininfo;other_relids = rel2->relids;}else{joininfo = rel2->joininfo;other_relids = rel1->relids;}foreach(l, joininfo)//遍历{RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);if (bms_overlap(other_relids, rinfo->required_relids))//存在交集{result = true;//存在连接条件break;}}/** We also need to check the EquivalenceClass data structure, which might* contain relationships not emitted into the joininfo lists.* 检查等价类*/if (!result && rel1->has_eclass_joins && rel2->has_eclass_joins)result = have_relevant_eclass_joinclause(root, rel1, rel2);//存在等价类连接条件return result;}//---------------------------------------------------- have_join_order_restriction/** have_join_order_restriction*      Detect whether the two relations should be joined to satisfy*      a join-order restriction arising from special or lateral joins.*      检查两个relations是否需要连接以满足join-order限制(由于special/lateral连接引起)** In practice this is always used with have_relevant_joinclause(), and so* could be merged with that function, but it seems clearer to separate the* two concerns.  We need this test because there are degenerate cases where* a clauseless join must be performed to satisfy join-order restrictions.* Also, if one rel has a lateral reference to the other, or both are needed* to compute some PHV, we should consider joining them even if the join would* be clauseless.* 在实践中,这通常与have_relevance _join子()一起使用,因此可以与该函数合并,* 但分离这两个关注点似乎更为清晰。在一些退化的情况下需要这个测试,* 必须执行无语法连接以满足连接顺序限制。* 另外,如果一个rel与另一个rel有一个lateral引用,* 或者两者都需要计算一些PHV,那么我们应该考虑加入它们,即使连接是无连接条件的。* * Note: this is only a problem if one side of a degenerate outer join* contains multiple rels, or a clauseless join is required within an* IN/EXISTS RHS; else we will find a join path via the "last ditch" case in* join_search_one_level().  We could dispense with this test if we were* willing to try bushy plans in the "last ditch" case, but that seems much* less efficient.* 注意:只有当简并外部连接的一侧包含多个rels时,*      或者在IN/EXISTS RHS中需要一个无修饰的连接时,才会出现这个问题;* 否则,将通过join_search_one_level()中的“last ditch”* 找到连接路径。如果愿意在“稠密计划”的情况下进行大量的尝试,* 那么可以省去这个测试,但这似乎效率要低得多。*/boolhave_join_order_restriction(PlannerInfo *root,RelOptInfo *rel1, RelOptInfo *rel2){bool        result = false;ListCell   *l;/** If either side has a direct lateral reference to the other, attempt the* join regardless of outer-join considerations.*/if (bms_overlap(rel1->relids, rel2->direct_lateral_relids) ||bms_overlap(rel2->relids, rel1->direct_lateral_relids))return true;//relids与lateral relids存在交集,返回T/** Likewise, if both rels are needed to compute some PlaceHolderVar,* attempt the join regardless of outer-join considerations.  (This is not* very desirable, because a PHV with a large eval_at set will cause a lot* of probably-useless joins to be considered, but failing to do this can* cause us to fail to construct a plan at all.)*/foreach(l, root->placeholder_list)//遍历PHV{PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);if (bms_is_subset(rel1->relids, phinfo->ph_eval_at) &&bms_is_subset(rel2->relids, phinfo->ph_eval_at))return true;}/** It's possible that the rels correspond to the left and right sides of a* degenerate outer join, that is, one with no joinclause mentioning the* non-nullable side; in which case we should force the join to occur.** Also, the two rels could represent a clauseless join that has to be* completed to build up the LHS or RHS of an outer join.*/foreach(l, root->join_info_list)//遍历连接链表{SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);/* ignore full joins --- other mechanisms handle them */if (sjinfo->jointype == JOIN_FULL)continue;/* Can we perform the SJ with these rels? */if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&bms_is_subset(sjinfo->min_righthand, rel2->relids)){result = true;break;}if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&bms_is_subset(sjinfo->min_righthand, rel1->relids)){result = true;break;}/** Might we need to join these rels to complete the RHS?  We have to* use "overlap" tests since either rel might include a lower SJ that* has been proven to commute with this one.*/if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&bms_overlap(sjinfo->min_righthand, rel2->relids)){result = true;break;}/* Likewise for the LHS. */if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&bms_overlap(sjinfo->min_lefthand, rel2->relids)){result = true;break;}}/** We do not force the join to occur if either input rel can legally be* joined to anything else using joinclauses.  This essentially means that* clauseless bushy joins are put off as long as possible. The reason is* that when there is a join order restriction high up in the join tree* (that is, with many rels inside the LHS or RHS), we would otherwise* expend lots of effort considering very stupid join combinations within* its LHS or RHS.*/if (result){if (has_legal_joinclause(root, rel1) ||has_legal_joinclause(root, rel2))result = false;}return result;}

二、跟踪分析

创建测试数据表并生成测试数据:

drop table if exists a;
drop table if exists b;
drop table if exists c;
drop table if exists d;
drop table if exists e;
drop table if exists f;create table a(c1 int,c2 varchar(20));
create table b(c1 int,c2 varchar(20));
create table c(c1 int,c2 varchar(20));
create table d(c1 int,c2 varchar(20));
create table e(c1 int,c2 varchar(20));
create table f(c1 int,c2 varchar(20));insert into a select generate_series(1,100),'TEST'||generate_series(1,100);
insert into b select generate_series(1,1000),'TEST'||generate_series(1,1000);
insert into c select generate_series(1,10000),'TEST'||generate_series(1,10000);
insert into d select generate_series(1,200),'TEST'||generate_series(1,200);
insert into e select generate_series(1,4000),'TEST'||generate_series(1,4000);
insert into f select generate_series(1,100000),'TEST'||generate_series(1,100000);

测试脚本:

testdb=# explain verbose select a.*,b.c1,c.c2,d.c2,e.c1,f.c2
from a inner join b on a.c1=b.c1,c,d,e inner join f on e.c1 = f.c1 and e.c1 < 100
where a.c1=f.c1 and b.c1=c.c1 and c.c1 = d.c1 and d.c1 = e.c1;QUERY PLAN                                                
----------------------------------------------------------------------------------------------------------Nested Loop  (cost=101.17..2218.24 rows=2 width=42)Output: a.c1, a.c2, b.c1, c.c2, d.c2, e.c1, f.c2Join Filter: (a.c1 = b.c1)->  Hash Join  (cost=3.25..196.75 rows=100 width=22)Output: a.c1, a.c2, c.c2, c.c1Hash Cond: (c.c1 = a.c1)->  Seq Scan on public.c  (cost=0.00..155.00 rows=10000 width=12)Output: c.c1, c.c2->  Hash  (cost=2.00..2.00 rows=100 width=10)Output: a.c1, a.c2->  Seq Scan on public.a  (cost=0.00..2.00 rows=100 width=10)Output: a.c1, a.c2->  Materialize  (cost=97.92..2014.00 rows=5 width=32)Output: b.c1, d.c2, d.c1, e.c1, f.c2, f.c1->  Hash Join  (cost=97.92..2013.97 rows=5 width=32)Output: b.c1, d.c2, d.c1, e.c1, f.c2, f.c1Hash Cond: (f.c1 = b.c1)->  Seq Scan on public.f  (cost=0.00..1541.00 rows=100000 width=13)Output: f.c1, f.c2->  Hash  (cost=97.86..97.86 rows=5 width=19)Output: b.c1, d.c2, d.c1, e.c1->  Hash Join  (cost=78.10..97.86 rows=5 width=19)Output: b.c1, d.c2, d.c1, e.c1Hash Cond: (b.c1 = e.c1)->  Seq Scan on public.b  (cost=0.00..16.00 rows=1000 width=4)Output: b.c1, b.c2->  Hash  (cost=78.04..78.04 rows=5 width=15)Output: d.c2, d.c1, e.c1->  Hash Join  (cost=73.24..78.04 rows=5 width=15)Output: d.c2, d.c1, e.c1Hash Cond: (d.c1 = e.c1)->  Seq Scan on public.d  (cost=0.00..4.00 rows=200 width=11)Output: d.c1, d.c2->  Hash  (cost=72.00..72.00 rows=99 width=4)Output: e.c1->  Seq Scan on public.e  (cost=0.00..72.00 rows=99 width=4)Output: e.c1Filter: (e.c1 < 100)
(38 rows)

测试SQL语句的连接关系:a-b,a-f,b-c,c-d,d-e,e-f
注:根据先前章节的知识,该SQL语句存在等价类{a.c1 b.c1 c.c1 d.c1 e.c1 f.c1}

启动gdb跟踪

(gdb) b join_search_one_level
Breakpoint 1 at 0x755667: file joinrels.c, line 67.
(gdb) c
Continuing.Breakpoint 1, join_search_one_level (root=0x3006e28, level=2) at joinrels.c:67
67      List      **joinrels = root->join_rel_level;

查看优化器信息(root)

(gdb) p *root
$13 = {type = T_PlannerInfo, parse = 0x2fa3410, glob = 0x3008578, query_level = 1, parent_root = 0x0, plan_params = 0x0, outer_params = 0x0, simple_rel_array = 0x2f510e8, simple_rel_array_size = 9, simple_rte_array = 0x2f51178, all_baserels = 0x2f53dd8, nullable_baserels = 0x0, join_rel_list = 0x2fcb5c8, join_rel_hash = 0x0, join_rel_level = 0x2fcafe8, join_cur_level = 2, init_plans = 0x0, cte_plan_ids = 0x0, multiexpr_params = 0x0, eq_classes = 0x2f52cb8, canon_pathkeys = 0x2fcb718, left_join_clauses = 0x0, right_join_clauses = 0x0, full_join_clauses = 0x0, join_info_list = 0x0, append_rel_list = 0x0, rowMarks = 0x0, placeholder_list = 0x0, fkey_list = 0x0, query_pathkeys = 0x0, group_pathkeys = 0x0, window_pathkeys = 0x0, distinct_pathkeys = 0x0, sort_pathkeys = 0x0, part_schemes = 0x0, initial_rels = 0x2fcaf18, upper_rels = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, upper_targets = {0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}, processed_tlist = 0x2f4f718, grouping_map = 0x0, minmax_aggs = 0x0, planner_cxt = 0x2e87040, total_table_pages = 627, tuple_fraction = 0, limit_tuples = -1, qual_security_level = 0, inhTargetKind = INHKIND_NONE, hasJoinRTEs = true, hasLateralRTEs = false, hasDeletedRTEs = false, hasHavingQual = false, hasPseudoConstantQuals = false, hasRecursion = false, wt_param_id = -1, non_recursive_path = 0x0, curOuterRels = 0x0, curOuterParams = 0x0, join_search_private = 0x0, partColsUpdated = false}

root->simple_rel_array_size=9,数组中有9个元素,从1-8(下标为0的元素无用)分别是1->RTE_RELATION/16775,2->RTE_RELATION/16778,3->RTE_JOIN,4->RTE_RELATION/16781,5->RTE_RELATION/16784,6->RTE_RELATION/16787,7->RTE_RELATION/16790,8->RTE_JOIN

  oid  | relname 
-------+---------16775 | a          -->116778 | b          -->2    16781 | c          -->416784 | d          -->516787 | e          -->616790 | f          -->7
(6 rows)

进入join_search_one_level函数,level=2,开始循环遍历joinrels

(gdb) n
74      root->join_cur_level = level;
(gdb) 
83      foreach(r, joinrels[level - 1])
(gdb) n
85          RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
(gdb) 
87          if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
(gdb) 
105             if (level == 2)     /* consider remaining initial rels */
(gdb) 
106                 other_rels = lnext(r);
(gdb) 
110             make_rels_by_clause_joins(root,

[level=2]进入make_rels_by_clause_joins函数

(gdb) step
make_rels_by_clause_joins (root=0x3006e28, old_rel=0x3008258, other_rels=0x2fcaf48) at joinrels.c:280
280     for_each_cell(l, other_rels)

[level=2]由于存在等价类{a.c1 b.c1 c.c1 d.c1 e.c1 f.c1},因此这一步骤会两两连接构造新的关系,ab,ac,ad,ae,af,bc,bd,...

(gdb) n
282         RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
(gdb) 
284         if (!bms_overlap(old_rel->relids, other_rel->relids) &&
(gdb) 
285             (have_relevant_joinclause(root, old_rel, other_rel) ||
(gdb) 
284         if (!bms_overlap(old_rel->relids, other_rel->relids) &&
(gdb) 
288             (void) make_join_rel(root, old_rel, other_rel);
(gdb) n
280     for_each_cell(l, other_rels)

[level=2]调用make_join_rel函数后,查看root->join_rel_level[2],relids=6=2+4,这是1号(关系a)和2号(关系b)RTE的连接.

(gdb) p *root->join_rel_level[2]
$6 = {type = T_List, length = 1, head = 0x2fcb5f8, tail = 0x2fcb5f8}
(gdb) p *(Node *)root->join_rel_level[2]->head->data.ptr_value
$7 = {type = T_RelOptInfo}
(gdb) p *(RelOptInfo *)root->join_rel_level[2]->head->data.ptr_value
$8 = {type = T_RelOptInfo, reloptkind = RELOPT_JOINREL, relids = 0x2fcb050, rows = 100, consider_startup = false, consider_param_startup = false, consider_parallel = true, reltarget = 0x2fcb068, pathlist = 0x2fcba08, ppilist = 0x0, partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0, cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 0, reltablespace = 0, rtekind = RTE_JOIN, min_attr = 0, max_attr = 0, attr_needed = 0x0, attr_widths = 0x0, lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 0, tuples = 0, allvisfrac = 0, subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false, fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0, baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, joininfo = 0x0, has_eclass_joins = true, top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partition_qual = 0x0, part_rels = 0x0, partexprs = 0x0, nullable_partexprs = 0x0, partitioned_child_rels = 0x0}
(gdb) set $tmp=(RelOptInfo *)root->join_rel_level[2]->head->data.ptr_value
(gdb) p *$tmp->relids->words
$10 = 6

[level=2]继续循环,下几组分别是ac,ad,ae,af

(gdb) p *$tmp->relids->words
$12 = 18/34/66/130

[level=2]完成对关系a的两两连接

(gdb) n
291 }
(gdb) 
join_search_one_level (root=0x3006e28, level=2) at joinrels.c:89
89          {
(gdb) n
83      foreach(r, joinrels[level - 1])

[level=2]类似的,处理b/c/d/e/f,两两形成连接,一共有15种组合(6!/(2!*(6-2)!))

(gdb) 
83      foreach(r, joinrels[level - 1])
(gdb) 
142     for (k = 2;; k++)
(gdb) p *root->join_rel_level[2]
$44 = {type = T_List, length = 15, head = 0x2fcb5f8, tail = 0x2fd7f78}

[level=2]完成level=2的调用,level2的relids组合有1&2,1&4,1&5,1&6,1&7,2&4,2&5,2&6,2&7,4&5,4&6,4&7,5&6,5&7,6&7

(gdb) 
standard_join_search (root=0x3006e28, levels_needed=6, initial_rels=0x2fcaf18) at allpaths.c:2757
2757            foreach(lc, root->join_rel_level[lev])

开始level=3的调用

(gdb) c
Continuing.Breakpoint 1, join_search_one_level (root=0x3006e28, level=3) at joinrels.c:67
67      List      **joinrels = root->join_rel_level;

[level=3]遍历level=2的RelOptInfo(两两连接形成的新关系)

(gdb) 
83      foreach(r, joinrels[level - 1])

[level=3]与level=2不同,选择初始的RelOptInfo进行连接,而不是同级的rels

...
(gdb) 
108                 other_rels = list_head(joinrels[1]);

[level=3]完成第一轮的循环,root->join_rel_level[3]链表中有4个Node(RelOptInfo),其relids分别是22/38/70/134,即1&2&4,1&2&5,1&2&6,1&2&7

(gdb) p *((RelOptInfo *)root->join_rel_level[3]->head->data.ptr_value)->relids->words
$55 = 22
(gdb) p *((RelOptInfo *)root->join_rel_level[3]->head->next->data.ptr_value)->relids->words
$56 = 38
(gdb) p *((RelOptInfo *)root->join_rel_level[3]->head->next->next->data.ptr_value)->relids->words
$57 = 70
(gdb) p *((RelOptInfo *)root->join_rel_level[3]->head->next->next->next->data.ptr_value)->relids->words
$58 = 134

[level=3]完成所有循环后的root->join_rel_level[3],构成连接的relids组合,一共20个(请参照数学组合的计算),包括1&2&4,1&2&5,1&2&6,1&2&7,1&4&5,1&4&6,1&4&7,...

...
(gdb) p *root->join_rel_level[3]
$68 = {type = T_List, length = 20, head = 0x2fd90d8, tail = 0x2f7f248}

[level=3]尝试bushy plans,达不到要求,退出循环

142     for (k = 2;; k++)
(gdb) 
144         int         other_level = level - k;
(gdb) 
150         if (k > other_level)
150         if (k > other_level)
(gdb) n
151             break;

[level=3]完成level=3的调用,开始level 4调用

(gdb) 
standard_join_search (root=0x3006e28, levels_needed=6, initial_rels=0x2fcaf18) at allpaths.c:2757
2757            foreach(lc, root->join_rel_level[lev])
(gdb) c
Continuing.Breakpoint 1, join_search_one_level (root=0x3006e28, level=4) at joinrels.c:67
67      List      **joinrels = root->join_rel_level;

[level=4]完成第一轮循环调用,查看root->join_rel_level[4],relids分别是54/86/150,即1&2&4&5,1&2&4&6,1&2&4&7

...
89          {
(gdb) 
83      foreach(r, joinrels[level - 1])
(gdb) p *root->join_rel_level[4]
$69 = {type = T_List, length = 3, head = 0x2f838e0, tail = 0x30654d8}
(gdb)  p *((RelOptInfo *)root->join_rel_level[4]->head->data.ptr_value)->relids->words
$70 = 54
(gdb)  p *((RelOptInfo *)root->join_rel_level[4]->head->next->data.ptr_value)->relids->words
$71 = 86
(gdb)  p *((RelOptInfo *)root->join_rel_level[4]->head->next->next->data.ptr_value)->relids->words
$72 = 150

[level=4]所有循环后的root->join_rel_level[4],构成连接的relids组合,一共15个

(gdb) b joinrels.c:142
Breakpoint 2 at 0x75576a: file joinrels.c, line 142.
(gdb) c
Continuing.Breakpoint 2, join_search_one_level (root=0x3006e28, level=4) at joinrels.c:142
142     for (k = 2;; k++)
(gdb) p *root->join_rel_level[4]
$73 = {type = T_List, length = 15, head = 0x2f838e0, tail = 0x307bd78}

[level=4]尝试bushy plans

...
(gdb) p k
$74 = 2
(gdb) p other_level
$75 = 2

[level=4]遍历k级关系,k=other_level,同一层次的rel,两两组合,即1&2,3&4等尝试两两配对连接

(gdb) n
153         foreach(r, joinrels[k])
...
(gdb) 
168             if (k == other_level)

[level=4]如relids=6和relids=48的两个关系

177                 if (!bms_overlap(old_rel->relids, new_rel->relids))
(gdb) 
184                     if (have_relevant_joinclause(root, old_rel, new_rel) ||
(gdb) p *old_rel->relids->words
$78 = 6
(gdb) p *new_rel->relids->words
$79 = 48

[level=4]构造新的关系,但该关系无法通过合法连接形成或者已存在,因此没有对root->join_rel_level[4]有所影响(调用前后均为15个Node)

(gdb) n
187                         (void) make_join_rel(root, old_rel, new_rel);
(gdb) 
173             for_each_cell(r2, other_rels)
(gdb) p *root->join_rel_level[4]
$80 = {type = T_List, length = 15, head = 0x2f838e0, tail = 0x307bd78}

[level=4]完成bushy plans,root->join_rel_level[4]元素个数没有变化

(gdb) c
Continuing.Breakpoint 3, join_search_one_level (root=0x3006e28, level=4) at joinrels.c:213
213     if (joinrels[level] == NIL)
(gdb) p *root->join_rel_level[4]
$82 = {type = T_List, length = 15, head = 0x2f838e0, tail = 0x307bd78}

[level=5]进入level=5调用

(gdb) c
Continuing.Breakpoint 1, join_search_one_level (root=0x3006e28, level=5) at joinrels.c:67
67      List      **joinrels = root->join_rel_level;

[level=5]完成第一轮循环调用,查看root->join_rel_level[5],relids分别是118/182,即1&2&4&5&6,1&2&4&6&7

(gdb) p *root->join_rel_level[5]
$83 = {type = T_List, length = 2, head = 0x30931d0, tail = 0x3093dc8}
(gdb) p *((RelOptInfo *)root->join_rel_level[5]->head->data.ptr_value)->relids->words
$85 = 118
(gdb) p *((RelOptInfo *)root->join_rel_level[5]->head->next->data.ptr_value)->relids->words
$86 = 182

[level=5]所有循环后的root->join_rel_level[5],构成连接的relids组合,一共6个

(gdb) p *root->join_rel_level[5]
$87 = {type = T_List, length = 6, head = 0x30931d0, tail = 0x309d188}

[level=5]尝试bushy plans,即2个rels连接生成的关系 join 3个rels连接生成的关系
完成调用

(gdb) c
Continuing.Breakpoint 3, join_search_one_level (root=0x3006e28, level=5) at joinrels.c:213
213     if (joinrels[level] == NIL)
(gdb) p *root->join_rel_level[5]
$91 = {type = T_List, length = 6, head = 0x30931d0, tail = 0x309d188}

[level=6]进入level=6调用

(gdb) c
Continuing.Breakpoint 1, join_search_one_level (root=0x3006e28, level=6) at joinrels.c:67
67      List      **joinrels = root->join_rel_level;

[level=6]与level=1的rels连接后,形成1个新的关系

(gdb) c
Continuing.Breakpoint 2, join_search_one_level (root=0x3006e28, level=6) at joinrels.c:142
142     for (k = 2;; k++)
(gdb) p *root->join_rel_level[6]
$92 = {type = T_List, length = 1, head = 0x3104cf8, tail = 0x3104cf8}

[level=6]尝试bushy plans,即2个rels连接生成的关系 join 4个rels连接生成的关系 & 3 join 3
完成调用,生成level=6的结果链表

(gdb) c
Continuing.Breakpoint 3, join_search_one_level (root=0x3006e28, level=6) at joinrels.c:213
213     if (joinrels[level] == NIL)
(gdb) p *root->join_rel_level[6]
$93 = {type = T_List, length = 1, head = 0x3104cf8, tail = 0x3104cf8}
(gdb) p *(RelOptInfo *)root->join_rel_level[6]->head->data.ptr_value
$94 = {type = T_RelOptInfo, reloptkind = RELOPT_JOINREL, relids = 0x3099a80, rows = 2, consider_startup = false, consider_param_startup = false, consider_parallel = true, reltarget = 0x3104a08, pathlist = 0x3104ec0, ppilist = 0x0, partial_pathlist = 0x0, cheapest_startup_path = 0x0, cheapest_total_path = 0x0, cheapest_unique_path = 0x0, cheapest_parameterized_paths = 0x0, direct_lateral_relids = 0x0, lateral_relids = 0x0, relid = 0, reltablespace = 0, rtekind = RTE_JOIN, min_attr = 0, max_attr = 0, attr_needed = 0x0, attr_widths = 0x0, lateral_vars = 0x0, lateral_referencers = 0x0, indexlist = 0x0, statlist = 0x0, pages = 0, tuples = 0, allvisfrac = 0, subroot = 0x0, subplan_params = 0x0, rel_parallel_workers = -1, serverid = 0, userid = 0, useridiscurrent = false, fdwroutine = 0x0, fdw_private = 0x0, unique_for_rels = 0x0, non_unique_for_rels = 0x0, baserestrictinfo = 0x0, baserestrictcost = {startup = 0, per_tuple = 0}, baserestrict_min_security = 4294967295, joininfo = 0x0, has_eclass_joins = false, top_parent_relids = 0x0, part_scheme = 0x0, nparts = 0, boundinfo = 0x0, partit

[level=6]查看访问路径

(gdb) set $roi=(RelOptInfo *)root->join_rel_level[6]->head->data.ptr_value
(gdb) p *$roi->pathlist
$97 = {type = T_List, length = 1, head = 0x3104ea0, tail = 0x3104ea0}
(gdb) p *(Node *)$roi->pathlist->head->data.ptr_value
$98 = {type = T_NestPath}
(gdb) p *(NestPath *)$roi->pathlist->head->data.ptr_value
$99 = {path = {type = T_NestPath, pathtype = T_NestLoop, parent = 0x31047f8, pathtarget = 0x3104a08, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 2, startup_cost = 101.1725, total_cost = 2218.2350000000001, pathkeys = 0x0}, jointype = JOIN_INNER, inner_unique = false, outerjoinpath = 0x2fccd80, innerjoinpath = 0x3107820, joinrestrictinfo = 0x3107ae0}

该path的innerjoinpath(构造该连接inner关系的path)和outerjoinpath(构造该连接outer关系的path)

(gdb) p *$np->innerjoinpath
$109 = {type = T_MaterialPath, pathtype = T_Material, parent = 0x3077c70, pathtarget = 0x3077e80, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 5, startup_cost = 97.922499999999999, total_cost = 2013.9974999999999, pathkeys = 0x0}
(gdb) p *$np->outerjoinpath
$110 = {type = T_HashPath, pathtype = T_HashJoin, parent = 0x2f54050, pathtarget = 0x2fcbf88, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 100, startup_cost = 3.25, total_cost = 196.75, pathkeys = 0x0}

DONE!

(gdb) c
Continuing.

三、参考资料

allpaths.c
cost.h
costsize.c
PG Document:Query Planning

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/6906/viewspace-2374837/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/6906/viewspace-2374837/

http://www.jmfq.cn/news/5078701.html

相关文章:

  • 多个域名多国语言网站seo优化/留号码的广告网站不需要验证码
  • 品牌网站策划书/页面设计漂亮的网站
  • 高端企业门户网站建设服务公司/数字营销
  • 网站设计外包/东莞seoseo关键词排名优化
  • .网站建设课程设计/如何优化关键词搜索
  • 政府门户网站设计/国家优化防控措施
  • 网站建设flash/免费推广渠道有哪些
  • 南昌seo如何优化/苏州优化收费
  • 制作电子商务网站页面/重庆seo标准
  • 做网站虚拟主机多少钱/seo站点是什么意思
  • 做秒杀网站/seo怎么优化关键词排名
  • 网上写作真正能赚钱的网站/让顾客进店的100条方法
  • 做办公室的网站/成都做整站优化
  • 网站建设买服务器还是数据库/软文推广媒体
  • 悬浮网站底部代码/郑州网站建设公司排名
  • 建设网站需要租服务器吗/互联网营销推广渠道
  • 企业网站后台管理/微信引流的十个方法
  • 网站开发的学校/网站查询进入
  • 做网站具体步骤/网站开发详细流程
  • 做复刻衣服买网站/市场营销经典案例
  • 网站策划书背景介绍怎么写/西安市seo排名按天优化
  • 济南做网站哪里便宜/网络推广工作内容怎么写
  • 上饶婚纱工作室网站建设/bt蚂蚁磁力
  • 如何用一个框架做网站/登封网站设计
  • 共青城网站建设/seo推广绩效考核指标是什么
  • 大连58同城招聘网最新招聘/seo基础入门
  • 水利建筑工程网站/semantic scholar
  • 网站管理员怎么做板块建设/网络营销的seo是做什么的
  • 松原市住房和城乡建设厅网站/免费的推广平台
  • 北京网站建设第一/什么是淘宝seo