当前位置: 首页 > news >正文

南海网站建设多少钱/抖音宣传推广方案

南海网站建设多少钱,抖音宣传推广方案,义乌公司做网站,sem网络推广公司有任何问题请在评论区留言,我尽可能的回复大家 一. 逆运动学的求解需要以下数学运算 利用DH参数得到每个关节的变换矩阵;利用变换矩阵求出机械臂整个链的变换矩阵;求出末端位姿;利用已知末端位姿和整个链的变换矩阵,…

有任何问题请在评论区留言,我尽可能的回复大家

一. 逆运动学的求解需要以下数学运算

  1. 利用DH参数得到每个关节的变换矩阵;
  2. 利用变换矩阵求出机械臂整个链的变换矩阵;
  3. 求出末端位姿;
  4. 利用已知末端位姿和整个链的变换矩阵,通过逆运动学方程来求解关节角度;
  5. 根据需求选解。

二. 代码实现过程

  1. 利用DH参数得到每个关节的变换矩阵:
Eigen::Matrix4d DH(double a, double d, double alpha, double theta) {Eigen::Matrix4d T;T << cos(theta), -sin(theta)*cos(alpha), sin(theta)*sin(alpha), a*cos(theta),sin(theta), cos(theta)*cos(alpha), -cos(theta)*sin(alpha), a*sin(theta),0, sin(alpha), cos(alpha), d,0, 0, 0, 1;return T;
}
  1. 利用变换矩阵求出机械臂整个链的变换矩阵:
Eigen::Matrix4d T_0e = Eigen::Matrix4d::Identity(4,4);
for (int i = 0; i < n; i++) {T_0e = T_0e * DH(a[i], d[i], alpha[i], theta[i]);
}
  1. 求出末端位姿:
Eigen::Matrix4d T_ee;
T_ee << 0.5938, -0.7381, 0.3254, 0.4494,0.8038, 0.5531, 0.2194, -0.1957,-0.0332, 0.3868, 0.9214, 0.6733,0, 0, 0, 1;
  1. 然后利用已知末端位姿和整个链的变换矩阵,通过逆运动学方程来求解关节角度。

三. 逆运动学方程求解关节角度

逆运动学方程求解关节角度是一个非线性方程组,有多种方法求解,如解析解、数值解等。这里以数值解的方法为例,介绍如何用c++代码实现逆运动学方程的求解。

  1. 实现齐次变换矩阵的逆变换:
Eigen::Matrix4d invT(const Eigen::Matrix4d& T) {Eigen::Matrix4d invT;invT.block<3,3>(0,0) = T.block<3,3>(0,0).transpose();invT.block<3,1>(0,3) = -invT.block<3,3>(0,0)*T.block<3,1>(0,3);invT.block<1,4>(3,0) << 0, 0, 0, 1;return invT;
}
  1. 实现逆运动学方程:
Eigen::Matrix<double,6,1> inverseKinematics(const Eigen::Matrix4d& T_ee, const Eigen::Matrix4d T_0e, const Eigen::Vector3d& p_e,const Eigen::Vector3d& o_x,const Eigen::Vector3d& o_y,const Eigen::Vector3d& o_z) {Eigen::Matrix<double,6,1> theta;Eigen::Matrix4d T_0e_inv = invT(T_0e);Eigen::Matrix4d T_ee_0 = T_ee * T_0e_inv;Eigen::Vector3d p_0 = T_ee_0.block<3,1>(0,3);Eigen::Vector3d o_z_0 = T_0e_inv.block<3,3>(0,0) * o_z;Eigen::Vector3d o_y_0 = T_0e_inv.block<3,3>(0,0) * o_y;Eigen::Vector3d o_x_0 = T_0e_inv.block<3,3>(0,0) * o_x;// 具体实现逆运动学方程,这里省略return theta;
}

其中逆运动学方程的计算的详细过程如下:
● 求解末端位置p和姿态R的关于机器人的参考坐标系的坐标。
● 根据UR10机械臂的末端位置和姿态,计算关节角度。
实现逆运动学方程的代码,它计算出的结果是一个长度为6的Eigen向量,代表6个关节的角度:

#include <Eigen/Dense>
#include <cmath>Eigen::Matrix<double, 6, 1> inverseKinematics(const Eigen::Matrix4d& T_ee, const Eigen::Matrix4d T_0e, const Eigen::Vector3d& p_e,const Eigen::Vector3d& o_x,const Eigen::Vector3d& o_y,const Eigen::Vector3d& o_z)
{Eigen::Matrix<double, 6, 1> joint_angles;Eigen::Vector3d p_0e = T_0e.block<3,3>(0,0).transpose() * (p_e - T_0e.col(3).head<3>());double c5 = T_ee(2,2);double s5 = sqrt(1 - c5*c5);joint_angles(4) = atan2(s5, c5);joint_angles(5) = atan2(-T_ee(0,2), T_ee(1,2));joint_angles(3) = atan2(T_ee(2,1)/s5, T_ee(2,0)/s5);double s3 = sin(joint_angles(3));double c3 = cos(joint_angles(3));joint_angles(0) = atan2((p_0e(1)*s3 - p_0e(2)*c3) / s5, p_0e(0) - (p_0e(1)*c3 + p_0e(2)*s3) * c5);joint_angles(2) = atan2((p_0e(1)*c3 + p_0e(2)*s3) / c5, p_0e(0) - p_0e(1)*s3 + p_0e(2)*c3);joint_angles(1) = atan2(o_y(0), o_x(0));return joint_angles;
}

根据这个计算流程,将步骤 2 中省略的逆运动学方程具体实现的代码补充上:

Eigen::Matrix<double,6,1> inverseKinematics(const Eigen::Matrix4d& T_ee, const Eigen::Matrix4d T_0e, const Eigen::Vector3d& p_e,const Eigen::Vector3d& o_x,const Eigen::Vector3d& o_y,const Eigen::Vector3d& o_z) {Eigen::Matrix<double,6,1> theta;Eigen::Matrix4d T_0e_inv = invT(T_0e);Eigen::Matrix4d T_ee_0 = T_ee * T_0e_inv;Eigen::Vector3d p_0 = T_ee_0.block<3,1>(0,3);Eigen::Vector3d o_z_0 = T_0e_inv.block<3,3>(0,0) * o_z;Eigen::Vector3d o_y_0 = T_0e_inv.block<3,3>(0,0) * o_y;Eigen::Vector3d o_x_0 = T_0e_inv.block<3,3>(0,0) * o_x;
// 逆运动学方程的具体实现double q1, q2, q3, q4, q5, q6;double d = p_e(2) - p_0(2);q1 = atan2(p_0(1), p_0(0));double c2 = (pow(p_0(0), 2) + pow(p_0(1), 2) - pow(d, 2) - pow(o_x_0(2), 2)) / (2 * o_x_0(2) * sqrt(pow(p_0(0), 2) + pow(p_0(1), 2) - pow(d, 2)));q2 = atan2(sqrt(1-pow(c2, 2)), c2);q3 = atan2(o_z_0(2), -o_x_0(0) * sin(q2) + o_x_0(2) * cos(q2));double s4 = -o_y_0(2) * cos(q2) - o_y_0(0) * sin(q2) * sin(q3) + o_y_0(1) * sin(q2) * cos(q3);double c4 = o_x_0(0) * cos(q3) + o_x_0(1) * sin(q3) + o_x_0(2) * sin(q2);q4 = atan2(s4, c4);double s5 = o_x_0(0) * cos(q3) * sin(q4) + o_x_0(1) * sin(q3) * sin(q4) + o_x_0(2) * cos(q4);double c5 = o_y_0(0) * cos(q3) * cos(q4) + o_y_0(1) * sin(q3) * cos(q4) - o_y_0(2) * sin(q4);q5 = atan2(-s5, c5);double s6 = -o_x_0(0) * sin(q3) + o_x_0(1) * cos(q3);double c6 = o_y_0(0) * cos(q3) * cos(q5) + o_y_0(1) * sin(q3) * cos(q5) - o_y_0(2) * sin(q5);q6 = atan2(s6, c6);theta << q1, q2, q3, q4, q5, q6;return theta;
}  

上面代码中的逆运动学方程的返回值 theta 可能会有多组解(UR机械臂通常为8组解),但是通常情况下仅返回一组最合适的解,因为它对应的正运动学方程只能够求出一组解。如果机器人的关节范围限制了某些解的取值范围,则需要在代码中加入关节范围限制的判断,以保证返回的解在关节范围内。
在当前代码中并没有对多组解进行选取的部分,所以该代码中直接返回的是求得的一组解。因为选取某一组解的方式取决于你所实现的逆运动学算法以及实际的应用需求,对于不同的需求,还需要对代码进行进一步的修改以实现选取一组合法的解的功能。
对于选解我在这里举一个例子:机械臂六个关节角度均有最大和最小的限制。
那么选解的代码可以写为:

if (q1 < q1_min) {q1 = q1 + 2 * M_PI;}if (q1 > q1_max) {q1 = q1 - 2 * M_PI;}// 根据需求,确定q2的取值范围if (q2 < q2_min) {q2 = q2_min;}if (q2 > q2_max) {q2 = q2_max;}// 根据需求,确定q3的取值范围if (q3 < q3_min) {q3 = q3_min;}if (q3 > q3_max) {q3 = q3_max;}// 根据需求,确定q4的取值范围if (q4 < q4_min) {q4 = q4_min;}if (q4 > q4_max) {q4 = q4_max;}// 根据需求,确定q5的取值范围if (q5 < q5_min) {q5 = q5_min;}if (q5 > q5_max) {q5 = q5_max;}// 根据需求,确定q6的取值范围if (q6 < q6_min) {q6 = q6_min;}if (q6 > q6_max) {q6 = q6_max;}theta << q1, q2, q3, q4, q5, q6;return theta;
http://www.jmfq.cn/news/5116069.html

相关文章:

  • b2b主要网站有哪些/宁波seo博客
  • 东莞做网站的网络公司/微信小程序开发费用
  • 重庆公司建网站流程/网络优化的基本方法
  • 黑客做网站/网络营销课程
  • 有没有做网站一次付费/活动营销案例100例
  • 浙江建设职业技术学院官方网站/网站建设的一般步骤
  • 自适应企业网站源码/品牌营销推广公司
  • wordpress 中文安装教程/关键词智能优化排名
  • ssm框架网站开发 参考文献/seo顾问是什么职业
  • 深圳实力网站建设/服务营销案例
  • 东莞网站建设案例/百度权重查询爱站网
  • 商城网站项目工作的流程/seo服务销售招聘
  • 高端网站建设 上海/网络推广费用一般多少
  • 个人网站制作模板图片/seo描述快速排名
  • 如何做网站设计/360优化大师旧版本
  • 做外贸搜索外国客户的网站/在线注册免费域名
  • 怎么定义自豪地采用WordPress/六六seo基础运营第三讲
  • jsp可以做网站首页吗/百度指数的数值代表什么
  • 做网站的一般多少钱/搜索引擎推广有哪些平台
  • 森东网站建设/重庆公司网站seo
  • 为何网站不被百度收录/搜索引擎技术
  • 快递网站建设日程表/简短的软文范例
  • 简述企业网站建设的目的有哪些/网站设计流程
  • 有专门做英文字幕的网站吗/搭建网站需要哪些步骤
  • 色91Av做爰网站/电子商务营销策划方案
  • 网络营销方案分析/seo项目经理
  • 做预售的网站/店铺推广方法
  • 成都网站建设兴田德润实力强/百度服务热线
  • 广告素材网站/昆明网络推广方式有哪些
  • app开发的网站/山东进一步优化