当前位置: 首页 > news >正文

企业宣传片汇报片拍摄/徐州seo推广

企业宣传片汇报片拍摄,徐州seo推广,网站模版网 下载,北京建筑培训网最近在建设数据仓库,处理数据的过程中,经常反复使用hive的HQL语句,尽管HQL和SQL语言有很多相同之处,但也并不是说HQL就能通用SQL的语法。在使用过程中要尤为注意。事情经过是这样的,我在把业务系统数据同步到数仓(数据…

最近在建设数据仓库,处理数据的过程中,经常反复使用hive的HQL语句,尽管HQL和SQL语言有很多相同之处,但也并不是说HQL就能通用SQL的语法。在使用过程中要尤为注意。事情经过是这样的,我在把业务系统数据同步到数仓(数据存储在Hive)中时,在数据汇总层(DWS),对数据进行汇总处理时,发现有数据丢失的问题,经过排查,发现是在使用 <> 引发的坑。

Hive 中 != 或 <> 致命陷阱

业务场景:把业务数据抽到ODS层(原始数据层)、在DWS层(数据汇总层),对多张多表中的数据进行汇总操作,目的是为了补全各表的多种维度指标(维表)。

实际操作:因为是在Hive直接使用HQL语句对多表进行Join的关联查询操作,把处理完成的数据写入到提前建好的表中。跑完SQL以后,对结果数据进行验证,发现少了数百万数据,问题极其严重(在实际开发过程中,一定要对结果进行多方面的校验),开始排查问题。

排查问题:首先是对逻辑进行排查。发现逻辑并无错误,之后分解HQL,把每个SQL过滤条件单独拿出来进行验证,发现问题。 在使用 <> 产生了坑。

问题思考:在数仓建设过程中,因为工作疏忽,忘记了对ODS原始数据层的数据进行处理。因为在把ODS原始数据层的数据同步到到DWS数据汇总层时,并没有经过DWD数据明细层的处理,导致问题出现。

注意:在数仓建设过程,因为业务数据、或日志数据、或其他来源的数据。因为数据往往是很脏乱差的,我们需要对数据进行清洗操作,也就是ETL过程。但是数据仓库有个指标很重要,就是要把原始数据原封不动的同步到ODS层,在DWD层对数据进行简单处理。比如补全数据的操作,对NULL或空值进行补值操作。

对!= 或 <>实操验证

首先,先建一张表,插入数据:create table if not exists not_eq_temp values(1,22,'小李','男','销售')(

id int comment 'id',

age int comment '年龄',

name string comment '姓名',

sex string comment '性别',

job string comment '工作'

);

insert into table not_eq_temp values(1,22,'小李','男','销售');

insert into table not_eq_temp values(2,,'小张','男','');

insert into table not_eq_temp values(3,26,'小丽','女','文员');

insert into table not_eq_temp values(4,22,'小花','女','行政');

insert into table not_eq_temp values(5,25,'小王','男','');

insert into table not_eq_temp values(6,24,'小明','男','销售');

然后,查询语句:select id,age,name,sex,job from not_eq_temp where age <> 22

查询结果:|  3| 26|'小丽'|'女'|'文员'|

|  5| 25|'小王'|'男'|  ''|

|  6| 24|'小明'|'男'|'销售'|

可以看出来,id为4的这行数据,在查询过程中丢失了。因为这行数据,年龄没有采集到,为空,在使用<>时,会把为null值的也过滤掉,这显然不是我们想要的结果。

如何解决使用<>过滤 空值的问题?

方案一

这就需要用到我们前面说的补值操作。在DWD层对缺少或空值的记录进行补值处理。

具体方式:select

id,

if(age is null,floor(rand()*100+200),age) AS age,

name,

sex,

job

from

not_eq_temp

注意:因为这里age是整数,我们使用floor(rand()*100+200) 来对age进行补值操作。这样做的好处是,使用rand()随机函数,有效避免数据倾斜情况的出现。

加200的目的,是为了跟正常年龄进行区别。在后续数据使用中,当我们看到200岁(目前来说没人能活200岁)以上的目标时,就能第一时间知道,这是我们补的值,原始业务数据并没有采集到年龄。

这只是一种情况,大家可以灵活使用。字段类型是字符串或其他类型时,补充对应类型的值就行。千万注意不要补同样的值,最好是随机数。

方案二

如果我们没有进行DWD层的操作,也就是没有补值操作。我们在查询数据的时候,可以使用条件判断避免出现null值被过滤的情况。

具体方式:select    id ,age ,name ,sex ,job from not_eq_temp where coalesce(age,1) <> 22

coalesce的用法,相当于if(expr is null,expr1,expr2)。

当然还有其他很多方式,我们可以在工作中,自己尝试。但是还是建议使用第一种方式,在DWD层对脏数据进行处理,因为这是建设数据仓库过程中很严格的规范要求。数据仓库中,一般dwd层就是用来对ods层数据进行简单处理的,如果不发挥这层的作用,那就有点不合时宜了。

使用不等值!= 或<>需要注意

在使用不等值:<>比较或过滤数据时,需要注意以下多种情况。

先来看看<>语法格式:

语法: A <> B

针对所有基本类型,如果表达式A为NULL,或者表达式B为NULL,返回NULL;如果表达式A与表达式B不相等,则为TRUE;否则为FALSE。

注意:在关系型数据库中,通常SQL的写法中不等于也可以这样写 != 。但在hive中,当一个string类型和int类型在进行比较的时候会查不出来结果。

数字和数字类型:可以用 != 比较;

带引号的数字和数字类型:也可以用!= 比较;

带引号的数字和带引号数字类型:还可以用 != 比较;

字符串和数字类型:不可以用 != 比较;

字符串和数字类型:不可以用 <> 比较;

总而言之,在使用!= 或 <>比较的时候两者的字段类型尽量保持一致。

http://www.jmfq.cn/news/5199823.html

相关文章:

  • wordpress 文章行距/西安seo网站推广优化
  • 怎么做免费的宣传网站/如何用html制作一个网页
  • 阿里巴巴国际站首页/杭州seo百度关键词排名推广
  • 阿里巴巴怎么做企业网站宣传/免费b站软件推广网站2023
  • 深圳网站建设服务合同/如何制作自己的网站?
  • 阿里巴巴的网站怎么做的/下载百度官方网站
  • 南京网站网站建设/厦门网
  • 做响应式网站一般都用哪些框架/网站搭建软件
  • 做教育的网站/广东宣布即时优化调整
  • 怎么做免费网站/深圳优化公司高粱seo较
  • 上海网站推广 优帮云/今日足球最新预测比分
  • 网站建设与规划实训总结/天津seo顾问
  • 网站 蓝色/今日国际新闻头条新闻
  • 动态网站的特点/糕点烘焙专业培训学校
  • 网站如何清除百度收录/长春网长春关键词排名站设计
  • 十堰秦楚网论坛十堰城事/百度seo是啥
  • 义乌设计网站/长沙百度推广运营公司
  • 沈阳手机网站制作/债务优化是什么意思
  • 四川网站制作/东莞seo项目优化方法
  • 南安网站定制/seo门户网站优化
  • 免费做宣传单页的网站/优化营商环境工作开展情况汇报
  • 网站域名服务器一年多少钱/网络推广应该怎么做啊
  • 天津建设局网站/seo关键词排名优化怎么样
  • wordpress如何修改首页/宁波关键词优化企业网站建设
  • 高端网站制作软件/产品营销策略有哪些
  • wordpress首页代码/seo营销排名
  • 做网站失败/做网站需要多少钱
  • 公司网站建设注意事项/大数据培训班需要多少钱
  • 赤壁专业建站公司/苏州百度
  • 建个网站 费用/软文推广发布平台