当前位置: 首页 > news >正文

龙华营销型网站建设公司/成都最新数据消息

龙华营销型网站建设公司,成都最新数据消息,web前端开发工资一般多少,四川确诊感染最新消息来源:力扣(LeetCode) 描述: 给你一个由若干 0 和 1 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0。 示例 1&#…

来源:力扣(LeetCode)

描述:

给你一个由若干 01 组成的二维网格 grid,请你找出边界全部由 1 组成的最大 正方形 子网格,并返回该子网格中的元素数量。如果不存在,则返回 0

示例 1:

输入:grid = [[1,1,1],[1,0,1],[1,1,1]]
输出:9

示例 2:

输入:grid = [[1,1,0,0]]
输出:1

提示:

  • 1 <= grid.length <= 100
  • 1 <= grid[0].length <= 100
  • grid[i][j] 为 0 或 1

方法:动态规划

思路与算法

我们假设以 (x, y) 为右下方顶点的最大的正方形边长为 l,此时正方形的四个顶点分别为 (x − l + 1, y − l + 1), (x, y − l + 1), (x − l + 1, y), (x, y),此时需要保证正方形的四条边上的数字均为 1。我们设 left[x][y] 表示以 (x, y) 为起点左侧连续 1 的最大数目,right[x][y] 表示以 (x, y) 为起点右侧连续 1 的最大数目,up[x][y] 表示从 (x, y) 为起点上方连续 1 的最大数目,down[x][y] 表示以 (x, y) 为起点下方连续 1 的最大数目。此时正方形的四条边中以四个顶点为起点的连续 1 的数目分别为:上侧边中以 (x − l + 1, y − l + 1) 为起点连续 1 数目为 right[x − l + 1][y − l + 1],左侧边中以 (x − l + 1, y − l + 1) 为起点连续 1 的数目为 down[x − l + 1][y − l + 1],右侧边中以 (x, y) 为起点连续 1 的数目为 up[x][y],下侧边中以 (x,y) 为起点连续 1 的数目为 left[x][y]。

如果连续 1 的数目大于等于 l,则构成一条「合法」的边,如果正方形的四条边均「合法」,此时一定可以构成边界全为 1 且边长为 l 的正方形。
1

我们只需要求出以 (x, y) 为起点四个方向上连续 1 的数目,枚举边长 l 即可求出以 (x, y) 为右下顶点构成的边界为 1 的最大正方形,此时我们可以求出矩阵中边界为 1 的最大正方形。

本题即转换为求矩阵中任意位置 (x, y) 为起点上下左右四个方向连续 1 的最大数目,此时可以利用动态规划:

  • 如果当前 grid[x][x] = 0 此时,四个方向的连续 1 的长度均为 0;

  • 如果当前 grid[x][x] = 1 此时,四个方向的连续 1 的最大数目分别等于四个方向上前一个位置的最大数目加 1,计算公式如下:

2

在实际计算过程中我们可以进行优化,不必全部计算出四个方向上的最大连续 1 的数目,可以进行如下优化:

只需要求出每个位置 (x, y) 为起点左侧连续 1 的最大数目 left[x][y] 与上方连续 1 的最大数目 up[x][y] 即可。假设当前正方形的边长为 l,此时只需检测 up[x][y], left[x][y], left[x − l + 1][y], up[x][y − l + 1] 是否均满足大于等于 l 即可检测正方形的合法性。

枚举正方形的边长时可以从大到小进行枚举,我们已经知道以 (x, y) 为起点左侧连续 1 的最大数目 left[x][y] 与上方连续 1 的最大数目 up[x][y],此时能够成正方形的边长的最大值一定不会超过二者中的最小值 min(left[x][y], up[x][y]),从大到小枚举直到可以构成“合法”的正方形即可。

代码:

class Solution {
public:int largest1BorderedSquare(vector<vector<int>>& grid) {int m = grid.size(), n = grid[0].size();vector<vector<int>> left(m + 1, vector<int>(n + 1));vector<vector<int>> up(m + 1, vector<int>(n + 1));int maxBorder = 0;for (int i = 1; i <= m; i++) {for (int j = 1; j <= n; j++) {if (grid[i - 1][j - 1] == 1) {left[i][j] = left[i][j - 1] + 1;up[i][j] = up[i - 1][j] + 1;int border = min(left[i][j], up[i][j]);while (left[i - border + 1][j] < border || up[i][j - border + 1] < border) {border--;}maxBorder = max(maxBorder, border);}}}return maxBorder * maxBorder;}
};

执行用时:8 ms, 在所有 C++ 提交中击败了100.00%的用户
内存消耗:11.4 MB, 在所有 C++ 提交中击败了54.29%的用户
复杂度分析
时间复杂度:O(m × n × min(m, n)),其中 m 表示矩阵的行数,n 表示矩阵的列数。
空间复杂度:O(m × n),其中 m 表示矩阵的行数,n 表示矩阵的列数。需要保存矩阵中每个位置的最长连续 1 的数目,需要的空间为 O(m × n)。
author:LeetCode-Solution

http://www.jmfq.cn/news/5201101.html

相关文章:

  • 网站宣传文案有哪些/怎么进行网站推广
  • 哪些软件可以做网站/产品推广步骤
  • 天津网站建设培训学校/bt磁力库
  • 火车头采集做网站赚钱/网站增加外链的方法有哪些
  • 个人网页导航条图片/seo搜索引擎优化策略
  • 网站测试毕设代做/百度词条优化工作
  • 厦门网站建设哪家专业/商丘网站推广公司
  • 网站开发项目需求书/免费网站建设哪个好
  • 网站安全检测网站/网络营销专业是干嘛的
  • 免费创建网站的软件/商业网站
  • solidworks永久免费版/优化大师安卓版
  • 怎么做盗版网站/百度搜索引擎怎么做
  • 给你网站你会怎么做的/快优吧seo优化
  • 成人用品网站怎么做/电商运营怎么自学
  • 做模特网站/明天上海封控16个区
  • 宁夏建设银行网站/三台网站seo
  • wordpress评论贴图表情字体/优化网站seo策略
  • 外贸网站建设上海/seo少女
  • wordpress建站被黑/semseo是什么意思
  • 网站内容设计是什么/广告接单平台app
  • 温州高端网站建设公司/站长之家seo综合
  • 石家庄网站建设登录/域名查询大全
  • 公司做网站是管理费用/百度在西安的公司叫什么
  • 甘肃省第九建设集团网站/中国营销传播网
  • 360云主机可以建设网站吗/广州网站建设方案维护
  • 安徽免费网站制作/搜索引擎优化seo多少钱
  • 网页版视频网站建设需要多少钱/seo推广有哪些公司
  • 相册网站开发/新网站seo外包
  • 百度商桥怎么接网站/推广普通话主题手抄报
  • 网站建设的流程是什么意思/商品标题优化