当前位置: 首页 > news >正文

360平台怎么做网站优化/资源搜索引擎搜索神器网

360平台怎么做网站优化,资源搜索引擎搜索神器网,汕头百度公司,wordpress完美重置在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具&#xff0…
在实践的最开始,我们首先需要导入一些基础的函数库包括:numpy (Python进行科学计算的基础软件包),pandas(pandas是一种快速,强大,灵活且易于使用的开源数据分析和处理工具),matplotlib和seaborn绘图。

step1

##  基础函数库
import numpy as np 
import pandas as pd## 绘图函数库
import matplotlib.pyplot as plt
import seaborn as sns
本次我们选择鸢花数据(iris)进行方法的尝试训练,该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

在这里插入图片描述
Step2:数据读取/载入

## 我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式
from sklearn.datasets import load_iris
data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

Step3:数据信息简单查看

## 利用.info()查看数据的整体信息
iris_features.info()
## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
iris_features.head()
iris_features.tail()
## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。
iris_target
## 利用value_counts函数查看每个类别数量
pd.Series(iris_target).value_counts()
## 对于特征进行一些统计描述
iris_features.describe()

在这里插入图片描述

从统计描述中我们可以看到不同数值特征的变化范围。

Step4:可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()

在这里插入图片描述

for col in iris_features.columns:sns.boxplot(x='target', y=col, saturation=0.5,palette='pastel', data=iris_all)plt.title(col)plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
利用箱型图我们也可以得到不同类别在不同特征上的分布差异情况。

# 选取其前三个特征绘制三维散点图
from mpl_toolkits.mplot3d import Axes3Dfig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()plt.show()

在这里插入图片描述
Step5:利用 逻辑回归模型 在二分类上 进行训练和预测

## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。
from sklearn.model_selection import train_test_split## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)
## 从sklearn中导入逻辑回归模型
from sklearn.linear_model import LogisticRegression
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
## 查看其对应的w
print('the weight of Logistic Regression:',clf.coef_)## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:',clf.intercept_)
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)
from sklearn import metrics## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

在这里插入图片描述
Step6:利用 逻辑回归模型 在三分类(多分类)上 进行训练和预测

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)
## 查看其对应的w
print('the weight of Logistic Regression:\n',clf.coef_)## 查看其对应的w0
print('the intercept(w0) of Logistic Regression:\n',clf.intercept_)## 由于这个是3分类,所有我们这里得到了三个逻辑回归模型的参数,其三个逻辑回归组合起来即可实现三分类。
## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))
## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()

在这里插入图片描述
通过结果我们可以发现,其在三分类的结果的预测准确度上有所下降,其在测试集上的准确度为: 86.67% ,这是由于’versicolor’(1)和 ‘virginica’(2)这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界),所有在这两类的预测上出现了一定的错误。
5 重要知识点

逻辑回归 原理简介:

Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:

𝑙𝑜𝑔𝑖(𝑧)=11+𝑒−𝑧

其对应的函数图像可以表示如下:

import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-5,5,0.01)
y = 1/(1+np.exp(-x))
​
plt.plot(x,y)
plt.xlabel('z')
plt.ylabel('y')
plt.grid()
plt.show()

在这里插入图片描述

通过上图我们可以发现 Logistic 函数是单调递增函数,并且在z=0的时候取值为0.5,并且 𝑙𝑜𝑔𝑖(⋅) 函数的取值范围为 (0,1) 。

而回归的基本方程为 𝑧=𝑤0+∑𝑁𝑖𝑤𝑖𝑥𝑖 ,

将回归方程写入其中为:

𝑝=𝑝(𝑦=1|𝑥,𝜃)=ℎ𝜃(𝑥,𝜃)=11+𝑒−(𝑤0+∑𝑁𝑖𝑤𝑖𝑥𝑖)

所以,

𝑝(𝑦=1|𝑥,𝜃)=ℎ𝜃(𝑥,𝜃) , 𝑝(𝑦=0|𝑥,𝜃)=1−ℎ𝜃(𝑥,𝜃)

逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数 𝑦=11+𝑒−𝑧 ,当 𝑧=>0 时, 𝑦=>0.5 ,分类为1,当 𝑧<0 时, 𝑦<0.5 ,分类为0,其对应的 𝑦 值我们可以视为类别1的概率预测值.

对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的 𝑤 。从而得到一个针对于当前数据的特征逻辑回归模型。

而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

http://www.jmfq.cn/news/5289643.html

相关文章:

  • 淄博网站建设/恶意点击软件有哪些
  • 东莞网站竞价推广/开封seo公司
  • 上海seo网站优化/旺道seo工具
  • 桂林北站离哪个景区近/脚本外链平台
  • 网站建设优秀网站建/整合营销的案例
  • 政务门户网站建设/google国际版
  • 一个公司可以做多少个网站/在线生成个人网站免费
  • 青岛的网站建设公司/网站推广优化招聘
  • 高品质的佛山网站建设/谁有恶意点击软件
  • 校园网站制度建设/网络优化这个行业怎么样
  • 武汉万网站制作 费用/怎么seo网站排名
  • 做网站运营需要学什么/百度知道客服电话
  • 傻瓜建站/合肥seo
  • 南昌网站系统/网站页面优化方案
  • 北京建设工程交易协会网站/百度网站的优化方案
  • 做网站投注代理犯罪吗/软文广告案例500字
  • 工商注册网站/搜索引擎优化常用方法
  • 建设网站八大员成绩查询/品牌运营推广方案
  • 做网站用什么配置的笔记本/山西网络营销seo
  • 商城网站平台/词语搜索排行
  • 手机编程软件中文版免费/百度seo新站优化
  • 中国做的手机系统下载网站/如何建立自己的网站?
  • wordpress 发帖/网站建设优化公司
  • 自己建设小城市网站得多少钱/搜狗指数官网
  • 石碣镇网站建设/福州seo网站排名
  • 如何在对方网站上做外链/多用户建站平台
  • 做简单网站用什么软件有哪些内容/电脑优化软件推荐
  • vue 网站开发/艾瑞指数
  • 中文网站开发/广东广州网点快速网站建设
  • 上海企业网站建设靠谱/平台推广渠道