当前位置: 首页 > news >正文

洪都建设集团有限公司网站/怎么写网站

洪都建设集团有限公司网站,怎么写网站,网站排名下降了怎么办,装置艺术那个网站做的好贝叶斯 贝叶斯学习的背景贝叶斯定理举例 概览选择假设— MAPMAP举例 选择假设 — 极大似然 MLML 举例: 抛硬币问题 极大似然 & 最小二乘Nave Bayesian Classifier (朴素贝叶斯分类器)举例1:词义消歧 (Word Sense Disambiguation)举例 2: 垃圾邮件过滤 从垃圾邮件…

贝叶斯

  • 贝叶斯学习的背景
  • 贝叶斯定理
      • 举例
  • 概览
    • 选择假设— MAP
      • MAP举例
    • 选择假设 — 极大似然 ML
        • ML 举例: 抛硬币问题
    • 极大似然 & 最小二乘
    • Naïve Bayesian Classifier (朴素贝叶斯分类器)
        • 举例1:词义消歧 (Word Sense Disambiguation)
        • 举例 2: 垃圾邮件过滤
      • 从垃圾邮件过滤中学到的经验
    • MDL (最小描述长度,Minimum Description Length)
      • MDL解释(基于信息理论)
      • MDL 和 MAP
      • 对MDL的另一个解释
  • 总结

贝叶斯学习的背景

  • 发现两件事情之间的关系 (因果分析, 先决条件 &结论) • 在我们的日常生活中,医生的疾病诊断可以被认为是一个贝叶斯学习过程
  • A → B A \rightarrow B AB
    • e.g. 肺炎 → \rightarrow 肺癌?
    • 很难直接判断
  • 反向思考
    • e.g. 有多少肺癌患者曾经得过肺炎?
      在这里插入图片描述

贝叶斯定理

在这里插入图片描述

P ( h ∣ D ) = P ( D ∣ h ) P ( h ) P ( D ) P(h|D) = \frac{P(D|h)P(h)}{P(D)} P(hD)=P(D)P(Dh)P(h)

举例: 某项化验测试结果与癌症诊断

  • P(h|D) = h的后验概率(posterior probability)
    P(h|D) : 已知测试结果=‘+’, 那么得了这种癌症的概率
  • P(h) = h的先验概率(prior probability)
    P(h) : 得这种癌症的概率
  • P(D)=D的先验概率
    P(D):测试结果 = ‘+’的概率
  • P(D|h) = 给定 h 情况下 D 的概率
    P(D|h):已知一个人得了这种癌症,那么测试结果为‘+’的概率
  • P(h)
    • 假设: 互相排斥
    • H假设空间: 完全详尽 ∑ P ( h i ) = 1 \sum P(h_i)=1 P(hi)=1
  • P(D)
    • D:所有可能数据中的一个采样集合
    • 与h相互独立
    • 在比较不同假设时可以忽略
  • P(D|h) (似然度 likelihood)
    • log likelihood log(P(D|h)

举例

  • 化验测试结果: +,患有某种癌症?
    P ( c a n c e r ∣ + ) = ? P(cancer|+)=? P(cancer+)=?

我们已知:

  • 正确的阳性样本: 98% (患有该癌症, 测试结果为 +)
  • 正确的阴性样本: 97% (未患该癌症, 测试结果为 -)
  • 在整个人群中,只有0.008 的人患这种癌症
    P ( c a n c e r ∣ + ) = P ( + ∣ c a n c e r ) P ( c a n c e r ) / P ( + ) = 0.98 ∗ 0.008 / ( 0.98 ∗ 0.008 + 0.03 ∗ 0.992 ) = 0.21 P(cancer | + ) = P(+| cancer) P(cancer) / P(+) = 0.98*0.008/(0.98*0.008+0.03*0.992)= 0.21 P(cancer+)=P(+cancer)P(cancer)/P(+)=0.980.008/(0.980.008+0.030.992)=0.21

P ( c a n c e r ) = 0.008 P(cancer) = 0.008 P(cancer)=0.008
P ( ¬ c a n c e r ) = 0.992 P(\neg cancer) = 0.992 P(¬cancer)=0.992

概览

  • 贝叶斯定理
    • 用先验概率来推断后验概率
  • M a x A P o s t e r i o r , M A P , h M A P ,极大后验假设 Max\ A\ Posterior, MAP, h_{MAP} ,极大后验假设 Max A Posterior,MAP,hMAP,极大后验假设
  • M a x i m u m L i k e l i h o o d , M L , h M L , 极大似然假设 Maximum Likelihood, ML, h_{ML}, 极大似然假设 MaximumLikelihood,ML,hML,极大似然假设
    • • ML vs. LSE (最小二乘,Least Square Error)
  • Naïve Bayes, NB, 朴素贝叶斯
    • 独立属性/特征假设
    • NB vs. MAP
  • Maximum description length, MDL (最小描述长度)
    • 权衡: 假设复杂度 vs. 假设带来的错误
    • MDL vs. MAP

选择假设— MAP

P ( h ∣ D ) = P ( D ∣ h ) P ( h ) P ( D ) P(h|D) = \frac{P(D|h)P(h)}{P(D)} P(hD)=P(D)P(Dh)P(h)

  • 一般我们需要在给定训练集上最有可能的假设
  • Maximum A Posteriori (MAP): (极大后验假设) hMA
    h M A P = a r g m a x h ∈ H P ( h ∣ D ) P ( h ) = a r g m a x h ∈ H P ( D ∣ h ) P ( h ) P ( D ) = a r g m a x h ∈ H P ( D ∣ h ) P ( h ) \begin{align*} h_{MAP} &= \underset{h \in H}{argmax}P(h|D)P(h) \\ &= \underset{h \in H}{argmax} \frac{P(D|h)P(h)}{P(D)} \\ &= \underset{h \in H}{argmax}P(D|h)P(h) \end{align*} hMAP=hHargmaxP(hD)P(h)=hHargmaxP(D)P(Dh)P(h)=hHargmaxP(Dh)P(h)

MAP举例

  • 实验室测试结果: +,患有某种特定癌症?

  • 当我们已知:

    • 正确的阳性: 98% (患癌, 检测结果 +)
    • 正确的阴性: 97% (不患癌, 检测结果 -)
    • 在整个人群中,只有 0.008 患有癌症
      a r g m a x h ∈ H P ( D ∣ h ) P ( h ) \underset{h \in H}{argmax}P(D|h)P(h) hHargmaxP(Dh)P(h)

    P ( + ∣ c a n c e r ) P ( c a n c e r ) = 0.0078 , P ( + ∣ ¬ c a n c e r ) P ( ¬ c a n c e r ) = 0.0298 P(+|cancer)P(cancer) =0.0078, P(+|\neg cancer)P(\neg cancer) = 0.0298 P(+cancer)P(cancer)=0.0078,P(+∣¬cancer)P(¬cancer)=0.0298
    h M A P = ¬ c a n c e r h_{MAP}= \neg cancer hMAP=¬cancer
    P ( c a n c e r ) = 0.008 P ( ¬ c a n c e r ) = 0.992 P ( + ∣ c a n c e r ) = 0.98 P ( − ∣ c a n c e r ) = 0.02 P ( + ∣ ¬ c a n c e r ) = 0.03 P ( − ∣ ¬ c a n c e r ) = 0.97 \begin{align*} P(cancer) = 0.008 \ \ \ \ &P(\neg cancer)=0.992 \\ P(+|cancer) = 0.98 \ \ \ \ &P(-|cancer) = 0.02 \\ P(+|\neg cancer) = 0.03 \ \ \ \ &P(-|\neg cancer) = 0.97 \\ \end{align*} P(cancer)=0.008    P(+cancer)=0.98    P(+∣¬cancer)=0.03    P(¬cancer)=0.992P(cancer)=0.02P(∣¬cancer)=0.97

    选择假设 — 极大似然 ML

    h M A P = a r g m a x h ∈ H P ( D ∣ h ) P ( h ) h_{MAP} = \underset {h \in H}{argmax}P(D|h)P(h) hMAP=hHargmaxP(Dh)P(h)
    在这里插入图片描述
    如果知道P(h),聪明的人总是能最大限度地从经验中学习

  • 如果我们完全不知道假设的概率分布,或者我们知道所有的假设发生的概率相同,那么MAP 等价于 Maximum Likelihood (hML 极大似然假设)
    h M L = a r g m a x h i i n H P ( D ∣ h i ) h_{ML} = \underset{h_i in H}{argmax}P(D|h_i) hML=hiinHargmaxP(Dhi)

ML 举例: 抛硬币问题

  • 2 个硬币: P1(H) = p,P2(H) = q
  • 抛1号硬币的概率是 a
  • 但是 a, p, q 未知的
  • 观察到一些产生序列:
    • 2HHHT,1HTHT, 2HHHT, 2HTTH
  • 估计 a, p, q 最有可能的值
  • “简单” 估计: ML (maximum likelihood,极大似然)
    - 抛一个(p,1-p)硬币 m 次,得到k 次 H 和 m-k 次 T
    l o g L ( D ∣ p ) = l o g P ( D ∣ p ) = l o g ( p k ( 1 − p ) m − k ) = k l o g p + ( m − k ) l o g ( 1 − p ) \begin{align*} logL(D|p) &= logP(D|p) \\ &=log(p^k(1-p)^{m-k} )\\ &=klogp+(m-k)log(1-p) \\ \end{align*} logL(Dp)=logP(Dp)=log(pk(1p)mk)=klogp+(mk)log(1p)
  • 求最大值,对 p 求导令导数为 0: d ( l o g L ( D ∣ p ) ) d p = k p − m − k 1 − p = 0 \frac{d(logL(D|p))}{dp} = \frac{k}{p} - \frac{m-k}{1-p} = 0 dpd(logL(Dp))=pk1pmk=0
  • 求解 p,得到: p = k / m p=k/m p=k/m

• 估计 a, p, q 最有可能的值
a = 1/4, p = 2/4, q = 8/12

极大似然 & 最小二乘

在这里插入图片描述

  • 训练数据: < x i , d i > <x_i,d_i> <xi,di>
  • d i = f ( x i ) + e i d_i = f(x_i) + e_i di=f(xi)+ei
    • di : 独立的样本.
    • f(xi): 没有噪声的目标函数值
    • ei: 噪声,独立随机变量,正态分布 N ( 0 , σ 2 ) N(0, σ^2) N(0,σ2)
  • → \rightarrow di : 正态分布 N ( f ( x i ) , σ 2 ) N(f(x_i),\sigma ^2) N(f(xi),σ2)
    在这里插入图片描述
    在这里插入图片描述
  • 独立随机变量,正态分布噪声 N ( 0 , σ 2 ) , h M L = h L S E N(0, \sigma^2), h_{ML} =h_{LSE} N(0,σ2),hML=hLSE

Naïve Bayesian Classifier (朴素贝叶斯分类器)

  • 假设目标函数 f : X → V X \rightarrow V XV,其中每个样本 x = (a1, a2, …, an). 那么最有可能的 f(x) 的值是:
    v M A P = a r g m a x v j ∈ V P ( x ∣ v j ) P ( v j ) v_{MAP} = \underset {v_j \in V}{argmax}P(x|v_j)P(v_j) vMAP=vjVargmaxP(xvj)P(vj)
  • 朴素贝叶斯假设:
    P ( x ∣ v j ) = P ( a 1 , a 2 . . . a n ∣ v j ) = ∏ i P ( a i ∣ v j ) P(x|v_j)=P(a_1,a_2...a_n|v_j)=\prod_iP(a_i|v_j) P(xvj)=P(a1,a2...anvj)=iP(aivj)
    每个属性 a 1 , a 2 . . . a n 独立 每个属性a_1,a_2...a_n独立 每个属性a1,a2...an独立
  • 朴素贝叶斯分类器:
    v N B = P v j ∈ V ( v j ) ∏ i P ( a i ∣ v j ) = a r g m a x v j ∈ V { l o g P ( v j ) + ∑ i l o g P ( a i ∣ v j ) } \begin{align*} v_{NB} &= \underset{v_j \in V}P(v_j)\prod_iP(a_i|v_j) \\ &=\underset{v_j \in V}{argmax}\{logP(v_j) + \sum_ilogP(a_i|v_j)\} \\ \end{align*} vNB=vjVP(vj)iP(aivj)=vjVargmax{logP(vj)+ilogP(aivj)}
    如果满足属性之间的独立性,那么 v M A P = v N B v_{MAP} = v_{NB} vMAP=vNB

举例1:词义消歧 (Word Sense Disambiguation)

  • e.g. fly =? bank = ?
  • 对于单词 w,使用上下文 c 进行词义消歧
    • e.g. A fly flies into the kitchen while he fry the chicken. (他在炸鸡时一只苍蝇飞进了厨房)
    • 上下文 c: 在词 w 周围的一组词wi(即:特征 / 属性)
    • si: 词 w 的第 ith 个含义(即:输出标签)
  • 朴素贝叶斯假设: P ( c ∣ s k ) = ∏ w i ∈ c P ( w i ∣ s k ) P(c|s_k)=\prod_{w_i \in c}P(w_i|s_k) P(csk)=wicP(wisk)
  • 朴素贝叶斯选择: s = a r g m a x s k { l o g P ( s k ) + ∑ w i ∈ c l o g P ( w i ∣ s k ) } s=\underset{s_k}{argmax}\{logP(s_k) + \sum_{w_i \in c}logP(w_i|s_k)\} s=skargmax{logP(sk)+wiclogP(wisk)}
    其中: P ( s k ) = C ( s k ) C ( w ) P ( w i ∣ s k ) = C ( w i , s k ) C ( s k ) P(s_k) = \frac{C(s_k)}{C(w)}\ \ \ \ \ P(w_i|s_k) = \frac{C(w_i,s_k)}{C(s_k)} P(sk)=C(w)C(sk)     P(wisk)=C(sk)C(wi,sk)

举例 2: 垃圾邮件过滤

在这里插入图片描述

  • 垃圾邮件量: 900亿/天,80% 来自 <200 发送者
  • 第四季度主要垃圾邮件来源 (数据来自 Sophos)
    • 美国 (21.3% 垃圾信息来源,较28.4%有所下降)
    • 俄罗斯 (8.3%, 较 4.4% 有上升)
    • 中国 (4.2%, 较 4.9% 有下降)
    • 巴西 (4.0%, 较 3.7% 有上升)

垃圾邮件过滤问题中人们学到的经验

  • 不要武断地忽略任何信息
    • E.g. 邮件头信息
  • 不同的代价: 假阳性 v.s. 假阴性
  • 一个非常好的参考报告: http://www.paulgraham.com/better.html

从垃圾邮件过滤中学到的经验

(根据报告:)
早期关于贝叶斯垃圾邮件过滤的论文有两篇,于1998年发表在同一个会议
在这里插入图片描述

1) 作者是 Pantel 和 Lin; 2) Microsoft 研究院的一个小组

Pantel 和 Lin的过滤方法效果更好
但它只能捕捉92%的垃圾邮件,且有1.16% 假阳性错误
文章作者实现了一个贝叶斯垃圾邮件过滤器
能捕捉 99.5%的垃圾邮件假阳性错误低于0.03%

Subject*FREE 0.9999
Subject*free 0.9782, 
free 0.6546 
free!! 0.9999
  • 5 处不同
  1. 他们训练过滤器的数据非常少:
    • 160 垃圾邮件和466非垃圾邮件
      2.最重要的一个不同可能是他们忽略了邮件头
      3.Pantel 和 Lin 对词进行了stemming (词干化) —— 做法有些草率了
      4.计算概率的方式不同。他们使用了全部的词,但作者只用了最显著的15个词
      5.他们
      没有对假阳性做偏置
      。而作者考虑了:对非垃圾邮件中出现的词频翻倍

MDL (最小描述长度,Minimum Description Length)

  • 奥卡姆剃刀:
    • 偏向于最短的假设
  • MDL:
    • 偏向假设 h 使得最小化: h M D L = a r g m i n h ∈ H { L C 1 ( h ) + L C 2 ( D ∣ h ) } h_{MDL}=\underset{h \in H}{argmin}\{L_{C_1}(h) + L_{C_2}(D|h)\} hMDL=hHargmin{LC1(h)+LC2(Dh)}
      其中 L C ( x ) L_C(x) LC(x)是 x在编码C下的 描述长度

MDL解释(基于信息理论)

  • 为随机发送的信息所设计的编码
    • 遇到消息 i 的概率是 pi
  • 所需的最短编码(最小期望传输位数)是什么?
    • 为可能性较大的消息赋予较短的编码
      在这里插入图片描述
  • 最优编码对消息i 的编码长度为 -log2 p 比特 [Shannon & Weaver 1949]
    在这里插入图片描述

MDL 和 MAP

-log2 p (h): 假设空间H最优编码下,h 的长度
-log2 p (D|h): 最优编码下,给定h 时D 的描述长度
在这里插入图片描述

对MDL的另一个解释

h M D L = a r g m i n h ∈ H { L C 1 ( h ) + L C 2 ( D ∣ h ) } h_{MDL} = \underset {h \in H}{argmin}\{L_{C_1}(h) + L_{C_2}(D|h)\} hMDL=hHargmin{LC1(h)+LC2(Dh)}

  • h的长度给定h编码数据的代价

    • 假设实例的序列以及编码规则对发送者和接收者来说都是已知的
    • 没有分类错误: 除h外不需要传输额外的信息
    • 如果 h 错误分类了某些样本,则需要传输:
        1. **哪个实例出错了? **
          – 最多 log2m (m: 实例的个数)
        1. **正确的分类结果是什么? **
          – 最多 log2k (k: 类别的个数)
  • 权衡: 假设的复杂程度 vs. 由假设造成的错误数

    • 更偏好 一个短的且错误更少的假设
      而不是一个长的但完美分类训练数据的假设
      在这里插入图片描述

总结

  • 贝叶斯定理
    • 用先验概率来推断后验概率
  • M a x A P o s t e r i o r , M A P , h M A P ,极大后验假设 Max\ A\ Posterior, MAP, h_{MAP} ,极大后验假设 Max A Posterior,MAP,hMAP,极大后验假设
  • M a x i m u m L i k e l i h o o d , M L , h M L , 极大似然假设 Maximum Likelihood, ML, h_{ML}, 极大似然假设 MaximumLikelihood,ML,hML,极大似然假设
    • • ML vs. LSE (最小二乘,Least Square Error)
  • Naïve Bayes, NB, 朴素贝叶斯
    • 独立属性/特征假设
    • NB vs. MAP
  • Maximum description length, MDL (最小描述长度)
    • 权衡: 假设复杂度 vs. 假设带来的错误
    • MDL vs. MAP
http://www.jmfq.cn/news/5311675.html

相关文章:

  • 贺兰网站建设/万能软文模板
  • 政府网站建设问责第一人/西安seo网站推广优化
  • 兴宁市网站建设/老鬼seo
  • 三乡网站建设/百度灰色关键词排名技术
  • 旅游网站建设设计/免费域名注册查询
  • 贫困户房屋建设补助在哪个网站公布/网页设计制作网站模板图片
  • 永康网站建设zjyuxun/西安做推广优化的公司
  • 龙岗同乐社区网站建设/一个新产品的营销方案
  • 铜城建设集团网站/软文是什么样子的
  • 慢慢网站建设/搜狗网站排名软件
  • 安徽省干部建设教育网站/正规百度推广
  • 商业网站建设的目的/it人必看的网站
  • 哪些是网站建设/百度指数分是什么
  • 聊城网站建设聊城/大连百度关键词优化
  • 腾冲网站建设的公司/发软文的网站
  • 内蒙古建设安全监督网站/推广app大全
  • 佛山企业网站建设/seo内容优化心得
  • 响应式网站建设免费/一个新品牌怎样营销推广
  • 建设环境工程技术中心网站/游戏推广公司靠谱吗
  • 服装网站建设规划书/淘宝优秀软文范例100字
  • 辽宁建设工程信息网新网站/企业邮箱域名
  • 网站建设 服务质量保证/广告投放策略
  • 自己买域名建设网站/爱站工具下载
  • 旅游网网站建设/怎么创造自己的网站
  • 网站建设都/网站关键字优化公司
  • 共和县公司网站建设/网络营销广告
  • 南京网站建设小程/推广品牌的方法
  • 四川省建设安全协会网站/app引流推广方法
  • 罗定市住房和城乡建设局网站/seo网络营销的技术
  • 顺德品牌网站建设价位/百度快速收录seo工具软件