当前位置: 首页 > news >正文

寻找富阳网站建设/手机优化大师为什么扣钱

寻找富阳网站建设,手机优化大师为什么扣钱,微信小程序商城制作一个需要多少钱,分享网站对联广告C 微积分 - 求导 - 自动微分(Automatic Differentiation) flyfish 自动微分(Automatic Differentiation,简称 AD)是一种用于精确计算函数导数的技术。它结合了符号微分的准确性和数值微分的效率。自动微分的核心思想…

C++ 微积分 - 求导 - 自动微分(Automatic Differentiation)

flyfish

自动微分(Automatic Differentiation,简称 AD)是一种用于精确计算函数导数的技术。它结合了符号微分的准确性和数值微分的效率。自动微分的核心思想是利用计算图对函数进行分解,通过链式法则高效地计算导数,而无需进行符号运算或近似计算。自动微分能自动计算复杂函数的精确梯度。

C++ 微积分 - 求导 - 解析法(符号计算、符号微分)
C++ 微积分 - 求导 - 数值法

自动微分的基本概念

1 计算图:
自动微分将计算过程表示为一个有向无环图(DAG),其中节点表示变量或中间计算结果,边表示计算操作。通过这个图,可以追踪每个变量对输出的影响。

2 链式法则:
自动微分利用链式法则逐步计算导数。链式法则表示复合函数的导数为各个部分导数的乘积。
在计算图中,每个节点对输出的贡献可以通过链式法则从后往前累积计算。

3 前向模式和反向模式:
前向模式(Forward Mode):逐个变量进行传播计算,适用于输入变量较少的情况。
反向模式(Reverse Mode):从输出开始逐步传播导数,适用于输出变量较少的情况(如机器学习中的损失函数)。

自动微分提供精确的导数值,而不是近似值。与符号微分相比,自动微分在计算复杂函数时更高效。用户无需手动推导导数,可以直接获得函数的导数。

符号微分:处理复杂函数的导数推导可能非常复杂,容易导致表达式膨胀。
数值微分:容易受到舍入误差的影响,特别是在计算机浮点运算中。

自动微分的强大之处在于它可以自动地应用一系列简单的微积分规则来计算复杂函数的导数。通过重载运算符,Dual 结构体能够使用这些基本规则构建导数,而无需手动推导。

常见求导法则及其实现

1. 加法法则

对于两个函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),有:
( f ( x ) + g ( x ) ) ′ = f ′ ( x ) + g ′ ( x ) (f(x) + g(x))' = f'(x) + g'(x) (f(x)+g(x))=f(x)+g(x)实现:Dual 结构体中,两个 Dual 对象相加时,值和导数分别相加。

Dual operator+(const Dual& other) const {return Dual(value + other.value, derivative + other.derivative);
}
2. 乘法法则

对于两个函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),有:
( f ( x ) ⋅ g ( x ) ) ′ = f ′ ( x ) ⋅ g ( x ) + f ( x ) ⋅ g ′ ( x ) (f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x) (f(x)g(x))=f(x)g(x)+f(x)g(x)实现:Dual 结构体中,两个 Dual 对象相乘时,使用乘积法则计算导数。

Dual operator*(const Dual& other) const {return Dual(value * other.value, value * other.derivative + derivative * other.value);
}
3. 商法则

对于两个函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),有:
( f ( x ) g ( x ) ) ′ = f ′ ( x ) ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) ( g ( x ) ) 2 \left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2} (g(x)f(x))=(g(x))2f(x)g(x)f(x)g(x)实现:Dual 结构体中,两个 Dual 对象相除时,使用商法则计算导数。

Dual operator/(const Dual& other) const {return Dual(value / other.value, (derivative * other.value - value * other.derivative) / (other.value * other.value));
}
4. 链式法则

对于复合函数 f ( g ( x ) ) f(g(x)) f(g(x)),有:
( f ( g ( x ) ) ) ′ = f ′ ( g ( x ) ) ⋅ g ′ ( x ) (f(g(x)))' = f'(g(x)) \cdot g'(x) (f(g(x)))=f(g(x))g(x)
自动微分天然支持链式法则,因为每个操作都跟踪其导数,计算过程中自动应用链式法则。

使用基本规则计算复合函数的导数

展示如何使用这些基本规则计算复合函数 h ( x ) = ( x 2 + 1 ) ⋅ sin ⁡ ( x ) h(x) = (x^2 + 1) \cdot \sin(x) h(x)=(x2+1)sin(x) 的导数。

#include <iostream>
#include <cmath>const double M_PI = 3.1415;
// 双数结构体,用于实现前向模式自动微分
struct Dual {double value;      // 函数值double derivative; // 导数值// 构造函数,初始化双数Dual(double v, double d) : value(v), derivative(d) {}// 重载加法运算符Dual operator+(const Dual& other) const {return Dual(value + other.value, derivative + other.derivative);}// 重载乘法运算符Dual operator*(const Dual& other) const {return Dual(value * other.value,value * other.derivative + derivative * other.value);}// 重载正弦函数friend Dual sin(const Dual& x) {return Dual(std::sin(x.value), std::cos(x.value) * x.derivative);}
};int main() {// 初始化 x 为一个双数,值为 π/4,导数为 1Dual x(M_PI / 4, 1.0);// 计算 h(x) = (x^2 + 1) * sin(x)Dual x_squared = x * x; // x^2Dual one(1.0, 0.0);     // 常数 1Dual h = (x_squared + one) * sin(x);// 输出结果std::cout << "h(x) 的值为: " << h.value << std::endl;std::cout << "h(x) 的导数为: " << h.derivative << std::endl;return 0;
}

自动微分法:使用前向模式自动微分来处理更复杂的函数,包括加法、乘法、除法、指数和对数函数。

  1. 结构体 Dual

  2. value 表示函数的值。
    derivative 表示导数的值。
    支持常见的运算符重载(加、减、乘、除、取反)以便进行代数操作。

  3. 数学函数支持:
    实现了 explog 函数,分别表示指数和对数函数的自动微分。

  4. 复杂函数计算:
    compute_function 函数实现了一个复杂的函数 f ( x ) = x 2 + 2 x + e x f(x) = x^2 + 2x + e^x f(x)=x2+2x+ex,并使用自动微分来计算其值和导数。

#include <iostream>
#include <cmath>// Dual number structure for automatic differentiation
struct Dual {double value;      // Function valuedouble derivative; // Derivative valueDual(double v, double d) : value(v), derivative(d) {}// Overload additionDual operator+(const Dual& other) const {return Dual(value + other.value, derivative + other.derivative);}// Overload subtractionDual operator-(const Dual& other) const {return Dual(value - other.value, derivative - other.derivative);}// Overload multiplicationDual operator*(const Dual& other) const {return Dual(value * other.value, value * other.derivative + derivative * other.value);}// Overload divisionDual operator/(const Dual& other) const {return Dual(value / other.value, (derivative * other.value - value * other.derivative) / (other.value * other.value));}// Overload unary minusDual operator-() const {return Dual(-value, -derivative);}
};// Exponential function
Dual exp(const Dual& x) {double exp_value = std::exp(x.value);return Dual(exp_value, exp_value * x.derivative);
}// Logarithm function
Dual log(const Dual& x) {return Dual(std::log(x.value), x.derivative / x.value);
}// Function to compute f(x) = x^2 + 2x + exp(x)
Dual compute_function(const Dual& x) {return x * x + Dual(2.0, 0.0) * x + exp(x);
}int main() {// Initialize x = 1.0 with derivative 1.0 (i.e., d(x)/dx = 1)Dual x(1.0, 1.0);// Compute the function and its derivativeDual result = compute_function(x);std::cout << "Function value at x = " << x.value << " is " << result.value << std::endl;std::cout << "Derivative at x = " << x.value << " is " << result.derivative << std::endl;return 0;
}
http://www.jmfq.cn/news/5318767.html

相关文章:

  • 网站建设丂金手指科杰/一键优化清理手机
  • 企业建设网站需要服务器吗/网络营销包括几个部分
  • 建设银行 企业网站/企业如何进行网站推广
  • 贵港市城乡建设委员会网站/武汉seo网络优化公司
  • 免费图片网站建设/网络营销公司排行榜
  • 濮阳中强网站建设/百度认证证书
  • 上海住房和城乡建设委员会门户网站/推广普通话的意义论文
  • 网站建设内容保障工作个人总结/软文广告
  • 惠州网站小程序建设点/被国家禁止访问的网站怎么打开
  • 政府网站集约化建设通知/链接提交
  • 电子兼职网站建设/太原seo推广外包
  • 徽文化网站建设方案书/软件商店安装
  • 香港网站建设的网络公司/百度地图导航网页版
  • 贵州省和城乡建设厅官方网站/西安网站seo价格
  • 网站正在建设中页面的英文/外包网络推广公司推广网站
  • 龙华网站 建设信科网络/计算机培训机构排名
  • 班级网站建设模板/seo店铺描述
  • 杭州公司网站建设哪家好/百度信息流推广是什么意思
  • 珙县网站建设/福州模板建站哪家好
  • 腾讯云网站建设教学视频教程/站长之家最新网站
  • 青岛网站建设商家/怎么自己制作网页
  • 游戏网站建设方案/seo做关键词怎么收费的
  • 天津网站建设公司/广州seo网站公司
  • 安徽集团网站建设/营口seo
  • 黄埔区建设局网站/网站提交
  • 厦门网站建设制作/做网站一般需要多少钱
  • 政府网站建设注意什么/五种常用的网站推广方法
  • 建设网站的经验/郴州网站seo
  • 重庆网站建设的好处/做一个个人网站
  • 丽水北京网站建设/万能导航网