当前位置: 首页 > news >正文

礼仪策划网站建设/网址搜索引擎入口

礼仪策划网站建设,网址搜索引擎入口,ecs搭建在线直播网站,大淘客网站代码知识点回顾: 随机种子内参的初始化神经网络调参指南 参数的分类调参的顺序各部分参数的调整心得 import torch import numpy as np import os import random# 全局随机函数 def set_seed(seed42, deterministicTrue):"""设置全局随机种子&#xff0…

知识点回顾:

  1. 随机种子
  2. 内参的初始化
  3. 神经网络调参指南
    1. 参数的分类
    2. 调参的顺序
    3. 各部分参数的调整心得
import torch
import numpy as np
import os
import random# 全局随机函数
def set_seed(seed=42, deterministic=True):"""设置全局随机种子,确保实验可重复性参数:seed: 随机种子值,默认为42deterministic: 是否启用确定性模式,默认为True"""# 设置Python的随机种子random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) # 确保Python哈希函数的随机性一致,比如字典、集合等无序# 设置NumPy的随机种子np.random.seed(seed)# 设置PyTorch的随机种子torch.manual_seed(seed) # 设置CPU上的随机种子torch.cuda.manual_seed(seed) # 设置GPU上的随机种子torch.cuda.manual_seed_all(seed)  # 如果使用多GPU# 配置cuDNN以确保结果可重复if deterministic:torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = False# 设置随机种子
set_seed(42)
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np# 设置设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 定义极简CNN模型(仅1个卷积层+1个全连接层)
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()# 卷积层:输入3通道,输出16通道,卷积核3x3self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)# 池化层:2x2窗口,尺寸减半self.pool = nn.MaxPool2d(kernel_size=2)# 全连接层:展平后连接到10个输出(对应10个类别)# 输入尺寸:16通道 × 16x16特征图 = 16×16×16=4096self.fc = nn.Linear(16 * 16 * 16, 10)def forward(self, x):# 卷积+池化x = self.pool(self.conv1(x))  # 输出尺寸: [batch, 16, 16, 16]# 展平x = x.view(-1, 16 * 16 * 16)  # 展平为: [batch, 4096]# 全连接x = self.fc(x)  # 输出尺寸: [batch, 10]return x# 初始化模型
model = SimpleCNN()
model = model.to(device)# 查看模型结构
print(model)# 查看初始权重统计信息
def print_weight_stats(model):# 卷积层conv_weights = model.conv1.weight.dataprint("\n卷积层 权重统计:")print(f"  均值: {conv_weights.mean().item():.6f}")print(f"  标准差: {conv_weights.std().item():.6f}")print(f"  理论标准差 (Kaiming): {np.sqrt(2/3):.6f}")  # 输入通道数为3# 全连接层fc_weights = model.fc.weight.dataprint("\n全连接层 权重统计:")print(f"  均值: {fc_weights.mean().item():.6f}")print(f"  标准差: {fc_weights.std().item():.6f}")print(f"  理论标准差 (Kaiming): {np.sqrt(2/(16*16*16)):.6f}")# 改进的可视化权重分布函数
def visualize_weights(model, layer_name, weights, save_path=None):plt.figure(figsize=(12, 5))# 权重直方图plt.subplot(1, 2, 1)plt.hist(weights.cpu().numpy().flatten(), bins=50)plt.title(f'{layer_name} 权重分布')plt.xlabel('权重值')plt.ylabel('频次')# 权重热图plt.subplot(1, 2, 2)if len(weights.shape) == 4:  # 卷积层权重 [out_channels, in_channels, kernel_size, kernel_size]# 只显示第一个输入通道的前10个滤波器w = weights[:10, 0].cpu().numpy()plt.imshow(w.reshape(-1, weights.shape[2]), cmap='viridis')else:  # 全连接层权重 [out_features, in_features]# 只显示前10个神经元的权重,重塑为更合理的矩形w = weights[:10].cpu().numpy()# 计算更合理的二维形状(尝试接近正方形)n_features = w.shape[1]side_length = int(np.sqrt(n_features))# 如果不能完美整除,添加零填充使能重塑if n_features % side_length != 0:new_size = (side_length + 1) * side_lengthw_padded = np.zeros((w.shape[0], new_size))w_padded[:, :n_features] = ww = w_padded# 重塑并显示plt.imshow(w.reshape(w.shape[0] * side_length, -1), cmap='viridis')plt.colorbar()plt.title(f'{layer_name} 权重热图')plt.tight_layout()if save_path:plt.savefig(f'{save_path}_{layer_name}.png')plt.show()# 打印权重统计
print_weight_stats(model)# 可视化各层权重
visualize_weights(model, "Conv1", model.conv1.weight.data, "initial_weights")
visualize_weights(model, "FC", model.fc.weight.data, "initial_weights")# 可视化偏置
plt.figure(figsize=(12, 5))# 卷积层偏置
conv_bias = model.conv1.bias.data
plt.subplot(1, 2, 1)
plt.bar(range(len(conv_bias)), conv_bias.cpu().numpy())
plt.title('卷积层 偏置')# 全连接层偏置
fc_bias = model.fc.bias.data
plt.subplot(1, 2, 2)
plt.bar(range(len(fc_bias)), fc_bias.cpu().numpy())
plt.title('全连接层 偏置')plt.tight_layout()
plt.savefig('biases_initial.png')
plt.show()print("\n偏置统计:")
print(f"卷积层偏置 均值: {conv_bias.mean().item():.6f}")
print(f"卷积层偏置 标准差: {conv_bias.std().item():.6f}")
print(f"全连接层偏置 均值: {fc_bias.mean().item():.6f}")
print(f"全连接层偏置 标准差: {fc_bias.std().item():.6f}")

@浙大疏锦行

http://www.jmfq.cn/news/5325607.html

相关文章:

  • 黄岛区建设局网站/河南公司网站建设
  • 县政府网站建设实施方案/西安seo培训学校
  • 大连建设局网站/摘抄一小段新闻
  • 网站建设是政府形象/网络营销类型有哪些
  • 学校网站建设内容设计/网络营销课程思政
  • 大型网站建设流程/百度一下首页网址
  • 课程网站建设的毕业论文/河北网站建设公司排名
  • 坪地网站建设价位/软文新闻发布平台
  • 预付网站建设费会计处理/陕西seo顾问服务
  • 网站建设 技术架构/软文推广代理平台
  • 上海 网站建设 外包it/手机建站平台
  • 简阳城乡建设委员会网站/千锋培训机构官网
  • 网站建设前台后台设计/互联网广告投放公司
  • 杭州城乡建设网站/百度快速排名培训
  • 温州市城乡建设建档案馆网站/网络营销工具平台
  • 对网站建设功能的情况说明/网络营销策划书2000字
  • 网站建设 新闻/专业软文代写
  • 个人网站建设主要功能/深圳推广平台有哪些
  • 个人网站建设方案书模板/软文如何推广
  • 大冶市建设局网站/上海关键词优化公司哪家好
  • 大数据网站建设和/做推广的软件有哪些
  • 栾川网站建设/郑州网站网页设计
  • 日本乡村为什么要建设网站/百度一下百度知道
  • 网站建设哪家公司好网站建设 公司/媒体发稿推广
  • 桂林百度网站建设/12345浏览器网址大全
  • 鞍山 网站建设/100大看免费行情的软件
  • 智能网站建设哪家好/吴中seo页面优化推广
  • 建设贷款网站哪家好/如何推广一个产品
  • 温州市建设安监局网站/怎样宣传自己的品牌
  • 网站建设公司好做吗/2021搜索引擎排名