当前位置: 首页 > news >正文

网站建设与网页制作/搜索引擎优化排名培训

网站建设与网页制作,搜索引擎优化排名培训,政府网站建设安全,温州市住房和城乡建设委员会网站在概率论中, 把有关论证随机变量和的极限分布为正态分布的一类定理称为中心极限定理称为中心极限定理称为中心极限定理。 本文介绍独立同分布序列的中心极限定理。 一 独立同分布序列的中心极限定理 定理1 设X1,X2,...Xn,...X_1, X_2, ...X_n,...X1​,X2​,...Xn…

在概率论中, 把有关论证随机变量和的极限分布为正态分布的一类定理称为中心极限定理称为中心极限定理称为中心极限定理

本文介绍独立同分布序列的中心极限定理。

一 独立同分布序列的中心极限定理

定理1X1,X2,...Xn,...X_1, X_2, ...X_n,...X1,X2,...Xn,... 是独立同分布的随机变量序列, 且具有相同数学期望和方差,E(Xi)=μ,D(Xi)=σ2(i=1,2,...)E(X_i)=\mu, D(X_i)=\sigma^2(i=1,2, ...)E(Xi)=μ,D(Xi)=σ2(i=1,2,...), 记随机变量 Yn=Y_n=Yn=∑i=1nXi−nμnσ\frac{\sum\limits_{i=1}^{n}X_i-n\mu}{\sqrt{n}\sigma}nσi=1nXinμ 的分布函数为Fn(x)F_n(x)Fn(x), 则对于任意实数 xxx,

lim⁡n→∞Fn(x)=lim⁡n→∞P{Yn⩽x}=\lim\limits_{n \rightarrow \infty}F_n(x) =\lim\limits_{n \rightarrow \infty}P\{Y_n \leqslant x\} =nlimFn(x)=nlimP{Ynx}= lim⁡n→∞P\lim\limits_{n \rightarrow \infty}PnlimP{\{{ ∑i=1n−nμnσ\frac{\sum\limits_{i=1}^{n}-n\mu}{ \sqrt{n}\sigma}nσi=1nnμ }\}}

=∫−∞x12πe−t22dt=Φ(x)=\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt=\Phi(x)=x2π1e2t2dt=Φ(x)
,

由这一定理可知以下结论:

1.

当n充分大时, 独立同分布的随机变量之和 Zn=∑i=1nXiZ_n=\sum\limits_{i=1}^{n}X_iZn=i=1nXi的分布近似于正态分布 N(nμ,nσ2)N(n\mu, n\sigma^2)N(nμ,nσ2).
中心极限定理告诉我们, 不论X1,X2,...,Xn,...X_1,X_2, ..., X_n,...X1,X2,...,Xn,...同服从什么分布, 当n充分大时, 其和ZnZ_nZn 近似服从正态分布.

2.

考虑 独立同分布的随机变量X1,X2,...,Xn,...X_1, X_2,..., X_n,...X1,X2,...,Xn,... 的平均值 X‾=1n∑i=1nXi\overline X = \frac{1}{n}\sum\limits_{i=1}^{n}X_iX=n1i=1nXi, 有

E(X‾)=E(\overline X) =E(X)= μ\muμ

D(X‾)=D(\overline X)=D(X)= σ2n\frac{\sigma^2}{n}nσ2
,

它的标准化随机变量为 X‾−μσ/n\frac{\overline X - \mu}{\sigma/ \sqrt{n}}σ/nXμ 即为上述YnY_nYn, 因此 X‾−μσ/n\frac{\overline X - \mu}{\sigma/ \sqrt{n}}σ/nXμ 的分布函数即是上述的Fn(x)F_n(x)Fn(x), 因而有

lim⁡n→∞Fn(x)=∫−∞x12πe−t22dt=Φ(x)\lim\limits_{n \rightarrow \infty}F_n(x) =\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt = \Phi(x)nlimFn(x)=x2π1e2t2dt=Φ(x).

由此可见, 当n充分大时, 独立同分布随机变量的平均值X‾=1n∑i=1nXi\overline X = \frac{1}{n}\sum\limits_{i=1}^{n}X_iX=n1i=1nXi 的分布近似于正态分布 NNN(μ,σ2n)(\mu, \frac{\sigma^2}{n})(μ,nσ2), 这是独立同分布中心极限定理的另一表达形式


二 棣莫弗—拉普拉斯中心极限定理

此定理是 定理1 的特殊情况。

定理2(棣—拉中心极限定理)

设随机变量ZnZ_nZn是n次独立重复试验中事件A发生的次数, p是事件A发生的概率, 则对于任意实数 xxx

lim⁡n→∞\lim\limits_{n \rightarrow \infty}nlimP{\{{Zn−npnp(1−p)⩽x\frac{Z_n-np}{\sqrt{np(1-p)}}\leqslant xnp(1p)Znnpx}\}}=∫−∞x12πe−t22dt=Φ(x)=\int_{- \infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt = \Phi(x)=x2π1e2t2dt=Φ(x).

由棣—拉中心极限定理,得到下列结论:

1.

在贝努利试验中, 若事件A发生的概率为p, 设ZnZ_nZn为n次独立重复试验中事件A发生的频数, 则当n充分大时, ZnZ_nZn 近似服从N(np,np(1−p))N(np, np(1-p))N(np,np(1p)).

2.

在贝努利试验中, 若事件A发生的概率为p, Znn\frac{Z_n}{n}nZn 为n次独立重复试验中事件A 发生的频率, 则当n充分大时, Znn\frac{Z_n}{n}nZn 近似服从N(p,p(1−p)n)N(p, \frac{p(1-p)}{n})N(p,np(1p)).



三 例题

  1. 设随机变量X~B(100, 0.2), Φ(x)\Phi(x)Φ(x) 为标准正态分布函数, 已知Φ(2.5)=0.9938\Phi(2.5)=0.9938Φ(2.5)=0.9938, 应用 中心极限定理, 可得 P{20⩽x⩽3020\leqslant x \leqslant 3020x30} ≈\approx ___________。

    解: X ~ B(100, 0.2), np=20, npq = 16, 则P{20 ⩽x⩽30\leqslant x \leqslant 30x30} = P{20−2016⩽X−2016⩽30−2016}P\{{\frac{20-20}{\sqrt{16}} \leqslant \frac{X-20}{\sqrt{16}} \leqslant \frac{30-20}{\sqrt{16}}}\}P{16202016X20163020} (这一步用到定理2)
    ≈Φ(30−204)−Φ(20−204)=Φ(2.5)−Φ(0)=0.9938−0.5=0.4938\approx \Phi(\frac{30-20}{4}) - \Phi(\frac{20-20}{4}) = \Phi(2.5) - \Phi(0) = 0.9938-0.5 = 0.4938Φ(43020)Φ(42020)=Φ(2.5)Φ(0)=0.99380.5=0.4938.
    答案为 0.4938。
http://www.jmfq.cn/news/5346703.html

相关文章:

  • 政府形象建设 网站更新/seo搜索引擎优化简历
  • 天猫网站建设的理由/跨境电商seo什么意思
  • 大朗东莞网站建设/朝阳网站seo
  • 2017年网站建设市场分析/成都百度推广
  • 手机建设网站赚钱/宽带推广方案
  • 江西省建设工程安全质量监督管理局网站/谷歌app下载 安卓
  • 天津建设工程计价网站/百度输入法下载
  • 党建网站建设课题/世界足球排名前十名
  • 政府网站建设计划/亚马逊免费的关键词工具
  • 手机网站建设哪家有/宁德市委书记
  • 濉溪建设投资网站/移动端关键词优化
  • 门户网站建设注意问题/app关键词推广
  • 类似建E网模型网站建设/成人教育培训机构
  • 顺的网站建设效果/沧州seo包年优化软件排名
  • 浙江省建设厅继续教育官方网站/百度竞价优化
  • 中国建设银行网站如何注册/网站建设网络推广平台
  • 汽车网站正在建设中模板/百度竞价推广价格
  • 安顺 网站建设/精准网络推广
  • 云畅网站建设网址/seo专员工资一般多少
  • 淮北 网站建设 有限公司/竞价推广论坛
  • 建设直销银行网站/云速seo百度点击
  • 论述网站开发建设的一般流程/购买一个网站域名需要多少钱
  • 网站建设套定额/外包公司是什么意思
  • 建设外贸网站要多少钱/盛大游戏优化大师
  • 惠州网站优化建设/上海百度
  • 百度建设网站/怎么推广自己的产品
  • 学校网站建设多少钱/seo研究协会
  • 崇明区建设镇政府网站/没有限制的国外搜索引擎
  • 新疆省建设厅官方网站/免费培训seo
  • 大连科技学院官方网站的建设与放/互联网营销培训课程