当前位置: 首页 > news >正文

单位网站建设运维情况/网络营销优秀案例

单位网站建设运维情况,网络营销优秀案例,北京网站开发网站建设,专门做女频的小说网站一、前言 最近人工智能、深度学习又火了,我感觉还是有必要研究一下。三年前浅学了一下原理没深入研究框架,三年后感觉各种框架都成熟了,现成的教程也丰富了,所以我继续边学边写。原教程链接: 第一章:tens…

一、前言

最近人工智能、深度学习又火了,我感觉还是有必要研究一下。三年前浅学了一下原理没深入研究框架,三年后感觉各种框架都成熟了,现成的教程也丰富了,所以我继续边学边写。原教程链接:

第一章:tensorflow安装与简介课程简介_哔哩哔哩_bilibili

所以准备出个系列的教程,给不耐烦看视频或者只是想浅了解一下的同学。我选的框架tensorflow,据说GPT也是用的这个,应该是比较大众化的了。

二、前序准备

1.开发环境

(1)Python3.8

(2)Anaconda3

(3)Tensorflow

(4)Numpy

(5)Pandas

(6)Sklearn

先依次安装好上面的软件和包,其中python3.8和Anaconda3是直接下载安装,如果官方链接比较慢,可以搜下三方的源安装。其中Anaconda3不是必须的,用这个工具是因为确实挺香的。

剩下的3-6都是pip安装的包,注意使用Anaconda3的话就在Anaconda Prompt里使用pip命令,如果是其他集成环境或者原生的python环境,直接就在cmd里使用pip安装。

 

pip安装时可能会遇到下载特别慢的情况,建议使用国内源,方法参考下面链接:

pip install安装python第三方库失败,该怎么办?

实际安装过程可能会比较曲折,需要大家慢慢研究了,一般来说多搜索下都能解决问题。比如安装Sklearn不是pip install sklearn(虽然也能安装上另外一个不相干的包),实际应该用:

pip install scikit-learn

类似的坑多的很,一时半会也列不完,反正也是花了一个晚上才算是把开发环境给搞定。

2.数据准备

这次我们是要做天气预测,那自然是要弄到历史的天气数据。有三个路径,一是购买打包好的大数据,看了下便宜的都要好几千。二是网上爬数据,参考下面的链接:

上海1月份天气|上海1月份气温|上海2011年1月份历史天气—全球天气网

这个网站从2011年1月到最新的天气数据都有,可以自己爬下来,推荐使用“八爪鱼”,还是挺好用。

第三个路径就是做伸手党,正好我手上有上海的数据,链接在文章末尾。

我手上的这份数据分为“训练集”和“验证集”两个文件,直观来看训练集就是用于模型训练,验证集就是使用训练好的模型来预测试试,数据的格式一样,在使用时需要裁剪一下。

 

各字段的意思看名字就知道了,其中avg指的是当日平均温度,avg_befor1指的是昨天的平均温度,avg_befor2前天的,依次类推,一共回溯7天的。这个模型也就是用前7天的平均气温来预测当天的平均温度。

三、构建模型

1.读入待训练的数据

(完整代码跟前面天气数据放一起了)

 

从上图,我们可以看到读入了4429行数据,每行有13列,这样的数据不能直接使用,需要裁剪一下。

2.数据裁剪

 

这里我们做了3个操作。

1)是将前7行有null的数据删除

2)是将avg这一列单独存起来了,用于后面的模型训练。

3)将high、low、avg三列从数据集中删除,因为我们是使用“历史数据”来预测当日的平均温度,这三列都属于当日数据所以要删除。

3.数据预处理

 

这里做了2个操作。

1)将数据集转化为array的形式,这样TensorFlow才能处理(自动去掉了title的内容)

2)将数据做归一化,主要是为了方便后面的模型训练,简单来说就是将15、20、30这些数字转化为-1到1之间的数字,可以参考下面这个链接。

https://blog.csdn.net/qq_51392112/article/details/129091683

4.构建模型

 

这里我们构建了一个16>32>1的神经网络模型,其中16、32、1指的是每一层的神经元数量,第一层与第二层的神经元数量无所谓可以随便写,第三层的1与预测的结果相对应,也就是我们使用前7天的平均温度,预测的是今天这“一个”平均温度。如果你预测的是当天最高温和最低温,就需要将第三层的1修改为2了。这里因为我们只预测1个结果(当天的平均温度),所以输出只需要1个。

其中model.compile是对神经网络进行配置,主要参数含义如下:

 

 

解释起来比较复杂,这里我们只管先用着,反正就是一些可以选择的参数,对模型的训练可能有很大影响,也可能没啥影响,一些资深人事主要工作就是调调这里改改哪里。

如果想改改参数看看效果,可以参考下面的链接:

https://blog.csdn.net/chaojishuai123/article/details/114580892

5.训练

 

model.fit里也有好几个参数,详细如下:

1)Input_features,输入的训练数据集

2)labels_avg,前面我们将avg列单独保存了起来就是为了用在这里

3)Validation_split=0.1,将其中的10%数据用于模型验证,剩下的90%用于模型训练

4)Epochs,迭代次数,也就是这些数据会被用于模型训练多少次

5)batch_size,每一次训练使用的数据量

除了features、labels,其他三个参数大家可以随意调调看对结果的影响。

上面截图中,注意有loss和val_loss两个结果,其中loss是模型训练后的“损失”,你可以理解loss越小则模型对你输入的数据匹配度越高(越契合你的训练数据)。Val_loss是模型验证的“损失”,也就是前面我们设置的那10%,这个值越小说明你的模型验证的结果也不错。

但Loss也不是越小越好,太小说明模型对你输入的数据产生了过拟合,可能结果是训练数据很不错但使用起来就很差。所以我们追求的其实是loss和val_loss的综合解,即在loss较低的情况下,val_loss也不太高。

6.输入待预测的数据

 

这里的操作与前面训练集其实很像,都是将数据读入后进行裁剪,同时将avg列另外存起来。最后将裁剪后的数据进行预处理。

7.预测

model1就是我们构建并训练好的模型了,现在我们可以使用前面准备好的训练集了。

 

下面我们再看看实际温度,只能说是毫无关系,所以天气预报为什么不准呢对吧,说明根本就无法预测。不死心的同学可以试试自己修改下参数。

 

四、回顾

这是一次不太成功的示范,实际上我花了不少时间试图从最高温、最低温、平均温度、历史温度等找到温度变化的规律,但真的是没弄成。说明在深度学习中找对目标和数据集很重要啊。数据集和完整代码见下面的链接:

文件分享

http://www.jmfq.cn/news/5146867.html

相关文章:

  • 知名设计网站公司/百度竞价排名算法
  • 网站搭建策略与方法有哪些方面/如何自己做一个网址
  • 长沙专业网站建设服务/百度指数数据分析
  • 上海人才引进官网/免费seo推广计划
  • 家具网站建设规划书/宁波网络营销公司有哪些
  • 外贸推广短信群发/seo是指搜索引擎营销
  • 网站建设怎么申请空间/网站投放广告费用
  • wordpress 网站图标设置方法/宁波seo教程
  • 网站不备案做优化/品牌推广运营策划方案
  • 做电影网站配什么公众号/百度企业认证怎么认证
  • 电子商务网站规划与建设步骤/优化关键词排名工具
  • wordpress 图片上传失败/商品标题优化
  • 网站制作湖州/开封seo公司
  • 企业微信客户管理/班级优化大师的优点
  • 大型网站团队人数/百度seo优化是做什么的
  • 做视频网站需要什么空间吗/广州网络营销推广
  • 安徽智能网站建设制作/网络优化公司有哪些
  • 唐山做网站哪家好/网站推广优化排名seo
  • 深圳石岩网站建设/南昌seo计费管理
  • 广元网站建设价格/郑州关键词优化顾问
  • 虹口网站建设/国内设计公司前十名
  • 做电影网站怎么拿到版权/怎么建个人网站
  • 如何快速的建设网站/博客推广工具
  • 十堰市网站建设/b2b关键词排名工具
  • 怎么做自己的微信网站/大兴今日头条新闻
  • 衡阳网站备案/餐饮营销案例100例
  • 武汉app网站开发/东莞市网站seo内容优化
  • 京东网站建设/3小时百度收录新站方法
  • 自己做一个入库出库系统/宁波seo公司排名
  • 吸引企业做网站的文章内容/网站制作步骤流程图