题目描述:
https://leetcode-cn.com/problems/minimum-ascii-delete-sum-for-two-strings/
解题思路:
也是典型的dp问题。利用二维dp数组求解。
建立一个二维数组Dp[ i ][ j ],Dp[ i ][ j ]表示从s1中拿出 i 个元素和从 s2 中拿出 j 个元素的最小删除数。
当s1[i]=s2[j]时,dp[i][j] = dp[i-1][j-1].
当s1[i]!=s2[j],
动态转移方程为:
dp[i][j] = min(dp[i-1][j]+s1[i], dp[i][j-1]+s2[j], dp[i-1][j-1]+s1[i]+s2[j]) 。
代码:
class Solution { public:int minimumDeleteSum(string s1, string s2) {int len1 = s1.size();int len2 = s2.size();vector<vector<int>> dp(len1+1, vector<int>(len2+1, 0));for(int i=1; i<=len1; i++){dp[i][0] = dp[i-1][0] + s1[i-1];}for(int i=1; i<=len2; i++){dp[0][i] = dp[0][i-1] + s2[i-1];}for(int i=0; i<len1; i++){for(int j=0; j<len2; j++){if(s1[i] == s2[j])dp[i+1][j+1] = dp[i][j];else{dp[i+1][j+1] = min(dp[i][j+1]+s1[i], dp[i+1][j]+s2[j]);dp[i+1][j+1] = min(dp[i+1][j+1], dp[i][j]+s1[i]+s2[j]);}}}return dp[len1][len2];} };