当前位置: 首页 > news >正文

网站开发公司创业策划/济南网络推广网络营销

网站开发公司创业策划,济南网络推广网络营销,网站浏览图片怎么做,做网站必须要切图吗熊猫数据框架可以从列表、字典和字典列表等中创建。通过从现有存储中加载数据集来创建PandasDataFrame,存储可以是SQL数据库、CSV文件和Excel文件。Dataframe是一种二维数据结构,即数据以表格方式排列成行和列。在按行和列排列的dataframe数据集中&#…

熊猫数据框架可以从列表、字典和字典列表等中创建。通过从现有存储中加载数据集来创建PandasDataFrame,存储可以是SQL数据库、CSV文件和Excel文件。

16ef603e848cc9e9d1073bf875a5b6fa.png

Dataframe是一种二维数据结构,即数据以表格方式排列成行和列。在按行和列排列的dataframe数据集中,我们可以将任意数量的数据集存储在一个dataframe中。

我们可以对这些数据集执行许多操作,如算术操作、列/行选择、列/行加法等。

5b02bc976ff2f0f547037fed0d7541a6.png

熊猫数据框架可以通过多种方式创建。让我们逐一讨论创建DataFrame的不同方法。

1、DataFrame的创建

DataFrame是一种表格型数据结构,它含有一组有序的列,每列可以是不同的值。

创建一个空的dataframe:
可以创建的基本DataFrame是一个空的Dataframe。一个空的Dataframe是通过调用dataframe构造函数来创建的。

# import pandas as pd
import pandas as pd# Calling DataFrame constructor
df = pd.DataFrame()print(df)

产出:

Empty DataFrame
Columns: []
Index: []

DataFrame的创建有多种方式,不过最重要的还是根据dict进行创建,以及读取csv或者txt文件来创建。

根据字典创建

data = {'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],'year':[2000,2001,2002,2001,2002],'pop':[1.5,1.7,3.6,2.4,2.9]
}
frame = pd.DataFrame(data)
frame#输出pop state   year
0   1.5 Ohio    2000
1   1.7 Ohio    2001
2   3.6 Ohio    2002
3   2.4 Nevada  2001
4   2.9 Nevada  2002

DataFrame的行索引是index,列索引是columns,我们可以在创建DataFrame时指定索引的值:

frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])
frame2#输出year    state   pop debt
one 2000    Ohio    1.5 NaN
two 2001    Ohio    1.7 NaN
three   2002    Ohio    3.6 NaN
four    2001    Nevada  2.4 NaN
five    2002    Nevada  2.9 NaN

使用嵌套字典也可以创建DataFrame,此时外层字典的键作为列,内层键则作为索引:

pop = {'Nevada':{2001:2.4,2002:2.9},'Ohio':{2000:1.5,2001:1.7,2002:3.6}}
frame3 = pd.DataFrame(pop)
frame3
#输出Nevada  Ohio
2000    NaN 1.5
2001    2.4 1.7
2002    2.9 3.6

我们可以用index,columns,values来访问DataFrame的行索引,列索引以及数据值,数据值返回的是一个二维的ndarray

frame2.values

读取文件

读取文件生成DataFrame最常用的是read_csv,read_table方法。

该方法中几个重要的参数如下所示:

参数描述header默认第一行为columns,如果指定header=None,则表明没有索引行,第一行就是数据index_col默认作为索引的为第一列,可以设为index_col为-1,表明没有索引列nrows表明读取的行数sep或delimiter分隔符,read_csv默认是逗号,而read_table默认是制表符tencoding编码格式

从ndarray/列表的DECT创建DataFrame:
若要从NArray/List的DECT中创建DataFrame,所有NArray必须具有相同的长度。如果传递索引,那么长度索引应该等于数组的长度。如果没有传递索引,那么默认情况下,索引将是范围(N),其中n是数组长度。

# Python code demonstrate creating 
# DataFrame from dict narray / lists 
# By default addresses.import pandas as pd# intialise data of lists.
data = {'Name':['Tom', 'nick', 'krish', 'jack'], 'Age':[20, 21, 19, 18]}# Create DataFrame
df = pd.DataFrame(data)# Print the output.
print(df)

产出:

cbfc13732c140b7c497fb14dcd019a6c.png

利用字典从列表中创建熊猫数据:
利用字典从列表中创建熊猫数据框架可以通过不同的方式实现。我们可以使用字典从列表中创建熊猫数据pandas.DataFrame。使用Pandas中的这种方法,我们可以将一个列表字典转换为一个dataframe。

# importing pandas as pd
import pandas as pd# dictionary of lists
dict = {'name':["aparna", "pankaj", "sudhir", "Geeku"],'degree': ["MBA", "BCA", "M.Tech", "MBA"],'score':[90, 40, 80, 98]}df = pd.DataFrame(dict)print(df)

产出:

a8c06ef3233d6f999a4b9f52aed07e2a.png

2、DataFrame轴的概念

在DataFrame的处理中经常会遇到轴的概念,这里先给大家一个直观的印象,我们所说的axis=0即表示沿着每一列或行标签索引值向下执行方法,axis=1即表示沿着每一行或者列标签模向执行对应的方法。

acf6f519bfddefb0f7b1e24acf1494cc.png

3、DataFrame一些性质

索引、切片
我们可以根据列名来选取一列,返回一个Series:

frame2['year']
#输出
one      2000
two      2001
three    2002
four     2001
five     2002
Name: year, dtype: int64

我们还可以选取多列或者多行:

data = pd.DataFrame(np.arange(16).reshape((4,4)),index = ['Ohio','Colorado','Utah','New York'],columns=['one','two','three','four'])
data[['two','three']]
#输出two three
Ohio    1   2
Colorado    5   6
Utah    9   10
New York    13  14#取行
data[:2]
#输出one two three   four
Ohio    0   1   2   3
Colorado    4   5   6   7

当然,在选取数据的时候,我们还可以根据逻辑条件来选取:

data[data['three']>5]
#输出one two three   four
Colorado    4   5   6   7
Utah    8   9   10  11
New York    12  13  14  15

pandas提供了专门的用于索引DataFrame的方法,即使用ix方法进行索引,不过ix在最新的版本中已经被废弃了,如果要是用标签,最好使用loc方法,如果使用下标,最好使用iloc方法:

#data.ix['Colorado',['two','three']]
data.loc['Colorado',['two','three']]
#输出
two      5
three    6
Name: Colorado, dtype: int64data.iloc[0:3,2]
#输出
Ohio         2
Colorado     6
Utah        10
Name: three, dtype: int64

修改数据
可以使用一个标量修改DataFrame中的某一列,此时这个标量会广播到DataFrame的每一行上:

data = {'state':['Ohio','Ohio','Ohio','Nevada','Nevada'],'year':[2000,2001,2002,2001,2002],'pop':[1.5,1.7,3.6,2.4,2.9]
}
frame2 = pd.DataFrame(data,index=['one','two','three','four','five'],columns=['year','state','pop','debt'])
frame2
frame2['debt']=16.5
frame2
#输出
year    state   pop debt
one 2000    Ohio    1.5 16.5
two 2001    Ohio    1.7 16.5
three   2002    Ohio    3.6 16.5
four    2001    Nevada  2.4 16.5
five    2002    Nevada  2.9 16.5

也可以使用一个列表来修改,不过要保证列表的长度与DataFrame长度相同:

frame2.debt = np.arange(5)
frame2
#输出year    state   pop debt
one 2000    Ohio    1.5 0
two 2001    Ohio    1.7 1
three   2002    Ohio    3.6 2
four    2001    Nevada  2.4 3
five    2002    Nevada  2.9 4

可以使用一个Series,此时会根据索引进行精确匹配:

val = pd.Series([-1.2,-1.5,-1.7],index=['two','four','five'])
frame2['debt'] = val
frame2
#输出year    state   pop debt
one 2000    Ohio    1.5 NaN
two 2001    Ohio    1.7 -1.2
three   2002    Ohio    3.6 NaN
four    2001    Nevada  2.4 -1.5
five    2002    Nevada  2.9 -1.7

重新索引
使用reindex方法对DataFrame进行重新索引。对DataFrame进行重新索引,可以重新索引行,列或者两个都修改,如果只传入一个参数,则会重新索引行:

frame = pd.DataFrame(np.arange(9).reshape((3,3)),index=[1,4,5],columns=['Ohio','Texas','California'])
frame2 = frame.reindex([1,2,4,5])
frame2
#输出Ohio    Texas   California
1   0.0 1.0 2.0
2   NaN NaN NaN
4   3.0 4.0 5.0
5   6.0 7.0 8.0states = ['Texas','Utah','California']
frame.reindex(columns=states)
#输出Texas   Utah    California
1   1   NaN 2
4   4   NaN 5
5   7   NaN 8

填充数据只能按行填充,此时只能对行进行重新索引:

frame = pd.DataFrame(np.arange(9).reshape((3,3)),index = ['a','c','d'],columns = ['Ohio','Texas','California'])
frame.reindex(['a','b','c','d'],method = 'bfill')
#frame.reindex(['a','b','c','d'],method = 'bfill',columns=states) 报错

丢弃指定轴上的值
可以使用drop方法丢弃指定轴上的值,不会对原DataFrame产生影响

frame = pd.DataFrame(np.arange(9).reshape((3,3)),index = ['a','c','d'],columns = ['Ohio','Texas','California'])
frame.drop('a') 
#输出
Ohio    Texas   California
a   0   1   2
c   3   4   5
d   6   7   8frame.drop(['Ohio'],axis=1)
#输出Texas   California
a   1   2
c   4   5
d   7   8

算术运算
DataFrame在进行算术运算时会进行补齐,在不重叠的部分补足NA:

df1 = pd.DataFrame(np.arange(9).reshape((3,3)),columns=list('bcd'),index=['Ohio','Texas','Colorado'])
df2 = pd.DataFrame(np.arange(12).reshape((4,3)),columns = list('bde'),index=['Utah','Ohio','Texas','Oregon'])
df1 + df2
#输出b   c   d   e
Colorado    NaN NaN NaN NaN
Ohio    3.0 NaN 6.0 NaN
Oregon  NaN NaN NaN NaN
Texas   9.0 NaN 12.0    NaN
Utah    NaN NaN NaN NaN

可以使用fill_value方法填充NA数据,不过两个df中都为NA的数据,该方法不会填充:

df1.add(df2,fill_value=0)
#输出b   c   d   e
Colorado    6.0 7.0 8.0 NaN
Ohio    3.0 1.0 6.0 5.0
Oregon  9.0 NaN 10.0    11.0
Texas   9.0 4.0 12.0    8.0
Utah    0.0 NaN 1.0 2.0

函数应用和映射
numpy的元素级数组方法,也可以用于操作Pandas对象:

frame = pd.DataFrame(np.random.randn(3,3),columns=list('bcd'),index=['Ohio','Texas','Colorado'])
np.abs(frame)
#输出b   c   d
Ohio    0.367521    0.232387    0.649330
Texas   3.115632    1.415106    2.093794
Colorado    0.714983    1.420871    0.557722

另一个常见的操作是,将函数应用到由各列或行所形成的一维数组上。DataFrame的apply方法即可实现此功能。

f = lambda x:x.max() - x.min()
frame.apply(f)
#输出
b    3.830616
c    2.835978
d    2.743124
dtype: float64frame.apply(f,axis=1)
#输出
Ohio        1.016851
Texas       4.530739
Colorado    2.135855
dtype: float64def f(x):return pd.Series([x.min(),x.max()],index=['min','max'])
frame.apply(f)
#输出b   c   d
min -0.714983   -1.415106   -0.649330
max 3.115632    1.420871    2.093794

元素级的Python函数也是可以用的,使用applymap方法:

format = lambda x:'%.2f'%x
frame.applymap(format)
#输出
b   c   d
Ohio    0.37    -0.23   -0.65
Texas   3.12    -1.42   2.09
Colorado    -0.71   1.42    -0.56

排序和排名
对于DataFrame,sort_index可以根据任意轴的索引进行排序,并指定升序降序

frame = pd.DataFrame(np.arange(8).reshape((2,4)),index=['three','one'],columns=['d','a','b','c'])
frame.sort_index()
#输出d   a   b   c
one 4   5   6   7
three   0   1   2   3frame.sort_index(1,ascending=False)
#输出d   a   b   c
one 4   5   6   7
three   0   1   2   3

DataFrame也可以按照值进行排序:

#按照任意一列或多列进行排序
frame.sort_values(by=['a','b'])
#输出d   a   b   c
three   0   1   2   3
one 4   5   6   7

汇总和计算描述统计
DataFrame中的实现了sum、mean、max等方法,我们可以指定进行汇总统计的轴,同时,也可以使用describe函数查看基本所有的统计项:

df = pd.DataFrame([[1.4,np.nan],[7.1,-4.5],[np.nan,np.nan],[0.75,-1.3]],index=['a','b','c','d'],columns=['one','two'])
df.sum(axis=1)
#输出
one    9.25
two   -5.80
dtype: float64#Na会被自动排除,可以使用skipna选项来禁用该功能
df.mean(axis=1,skipna=False)
#输出
a      NaN
b    1.300
c      NaN
d   -0.275
dtype: float64
#idxmax返回间接统计,是达到最大值的索引df.idxmax()
#输出
one    b
two    d
dtype: object#describe返回的是DataFrame的汇总统计
#非数值型的与数值型的统计返回结果不同
df.describe()
#输出
one two
count   3.000000    2.000000
mean    3.083333    -2.900000
std 3.493685    2.262742
min 0.750000    -4.500000
25% 1.075000    -3.700000
50% 1.400000    -2.900000
75% 4.250000    -2.100000
max 7.100000    -1.300000

DataFrame也实现了corr和cov方法来计算一个DataFrame的相关系数矩阵和协方差矩阵,同时DataFrame也可以与Series求解相关系数。

frame1 = pd.DataFrame(np.random.randn(3,3),index=list('abc'),columns=list('abc'))
frame1.corr
#输出
<bound method DataFrame.corr of           a         b         c
a  1.253773  0.429059  1.535575
b -0.113987 -2.837396 -0.894469
c -0.548208  0.834003  0.994863>frame1.cov()
#输出
a   b   c
a   0.884409    0.357304    0.579613
b   0.357304    4.052147    2.442527
c   0.579613    2.442527    1.627843#corrwith用于计算每一列与Series的相关系数
frame1.corrwith(frame1['a'])
#输出
a    1.000000
b    0.188742
c    0.483065
dtype: float64

处理缺失数据
Pandas中缺失值相关的方法主要有以下三个:
isnull方法用于判断数据是否为空数据;
fillna方法用于填补缺失数据;
dropna方法用于舍弃缺失数据。
上面两个方法返回一个新的Series或者DataFrame,对原数据没有影响,如果想在原数据上进行直接修改,使用inplace参数:

data = pd.DataFrame([[1,6.5,3],[1,np.nan,np.nan],[np.nan,np.nan,np.nan],[np.nan,6.5,3]])
data.dropna()
#输出0   1   2
0   1.0 6.5 3.0

对DataFrame来说,dropna方法如果发现缺失值,就会进行整行删除,不过可以指定删除的方式,how=all,是当整行全是na的时候才进行删除,同时还可以指定删除的轴。

data.dropna(how='all',axis=1,inplace=True)
data
#输出
0   1   2
0   1.0 6.5 3.0
1   1.0 NaN NaN
2   NaN NaN NaN
3   NaN 6.5 3.0

DataFrame填充缺失值可以统一填充,也可以按列填充,或者指定一种填充方式:

data.fillna({1:2,2:3})
#输出
0   1   2
0   1.0 6.5 3.0
1   1.0 2.0 3.0
2   NaN 2.0 3.0
3   NaN 6.5 3.0data.fillna(method='ffill')
#输出
0   1   2
0   1.0 6.5 3.0
1   1.0 6.5 3.0
2   1.0 6.5 3.0
3   1.0 6.5 3.0
http://www.jmfq.cn/news/5107141.html

相关文章:

  • 中国最近军事新闻视频/seo规则
  • seo做得好的企业网站/营销活动策划方案
  • 海南网站搭建/石家庄百度快照优化
  • 素材网站的素材可以商用吗/百度统计代码安装位置
  • 监控摄像机网站建设/深圳百度百科
  • 鲅鱼圈网站开发/企业课程培训
  • 网站建设优化哪家好/推广普通话手抄报模板可打印
  • 做网站建设费用预算/怎样申请网站注册
  • 做电影资源网站有哪些内容/seo兼职外包
  • 向网站服务器上传网页文件下载/广告策划书
  • 可信网站认证有必要吗/免费的短视频app大全下载
  • 野望是什么意思/衡阳seo外包
  • 常见的网站建设技术/广告推广软文案例
  • 做网站前台步骤/爱链接网如何使用
  • 网站优化预算/seo优化行业
  • html5做动态网站建设/北京seo地址
  • wx网站开发/抖音搜索seo排名优化
  • 济南制作网站的公司/磁力猫torrentkitty官网
  • 做宣传单用什么网站/职业培训学校
  • 建设一个最普通网站要多少钱/一键优化清理
  • b2b2c平台网站建设/中国互联网协会
  • 网站psd切图做响应式效果/网站制作的基本流程
  • 网页生成pdf/百度seo排名规则
  • 最少的钱怎么做网站/旺道网站排名优化
  • 武汉网站推广/搜索引擎优化seo什么意思
  • 设计比例网站/网络品牌推广
  • 长沙做网站要多少钱/网页制作成品
  • win7 iis新建网站/超级外链工具有用吗
  • 网站建设员工技能要求/关键词查询工具软件
  • 营销型网站的分类/软文怎么写吸引人