当前位置: 首页 > news >正文

郑州哪里有做网站/谷粉搜索谷歌搜索

郑州哪里有做网站,谷粉搜索谷歌搜索,网络代理网址,网站开发全流程Python实现从excel读取数据绘制成精美图像一、实验介绍1.1 实验内容这个世界从古至今一直是一个看颜值的世界。对于我们作报告,写文章时使用的图片,也是一样的。一图胜千言,一张制作精美的图片,不仅能展示大量的信息,更…

Python实现从excel读取数据绘制成精美图像

一、实验介绍

1.1 实验内容

这个世界从古至今一直是一个看颜值的世界。对于我们作报告,写文章时使用的图片,也是一样的。一图胜千言,一张制作精美的图片,不仅能展示大量的信息,更能体现绘图者的水平,审美,与态度。我的老板,国内外多家SCI,EI文章的审稿人,甚至跟我说,一篇文章拿到手里,一眼扫过去,看看数据和图片,就知道这篇文章值不值得发表,水平如何。由此观之,制作一张精美图片的意义,实在重大。本课程实现使用python从excel读取数据,并使用matplotlib绘制成二维图像。这一过程中,将通过一系列操作来美化图像,最终得到一个可以出版级别的图像。本课程对于需要书写实验报告,学位论文,发表文章,做PPT报告的学员具有较大价值。本课程的数据和图像,来源于我的一篇SCI文章,是一真实案例。

1.2 实验知识点

使用xlrd扩展包读取excel数据

使用matplotlib绘制二维图像

美化图像,添加标注,注释,显示Latex风格公式,坐标点处透明化处理等技巧

1.3 实验环境

python2.7

Xfce终端

1.4 适合人群

本课程难度为中等,适合具有Python基础的用户,对于需要书写实验报告,学位论文,发表文章,做PPT报告的学员具有较大价值。

1.5 代码获取

你可以通过下面命令将数据和代码下载到实验楼环境中,作为参照对比进行学习。

$ wget http://labfile.oss.aliyuncs.com/courses/791/finally.py

$ wget http://labfile.oss.aliyuncs.com/courses/791/my_data.xlsx

$ wget http://labfile.oss.aliyuncs.com/courses/791/phase_detector.xlsx

$ wget http://labfile.oss.aliyuncs.com/courses/791/phase_detector2.xlsx

二、开发准备

打开Xfce终端,下载并安装的相关依赖 。

$ sudo apt-get update

$ sudo apt-get install python-dev

$ sudo pip install numpy

$ sudo apt-get install python-matplotlib

$ sudo pip install xlrd

$ sudo apt-get install python-sip

$ sudo apt-get install libqt4-dev

$ sudo apt-get install python-qt4 python-qt4-dev pyqt4-dev-tools qt4-dev-tools

遇到是否安装的询问时,输入y,按回车键继续安装。

三、实验步骤

3.1 绘制一个简单图像,测试扩展包安装是否正常

安装完成matplotlib后,运行一个小程序测试其是否正常。我们来绘制一个非常简单的正弦函数。

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 10, 500)

dashes = [10, 5, 100, 5]  # 10 points on, 5 off, 100 on, 5 off

fig, ax = plt.subplots()

line1, = ax.plot(x, np.sin(x), ‘–’, linewidth=2,

label=‘Dashes set retroactively’)

line1.set_dashes(dashes)

line2, = ax.plot(x, -1 * np.sin(x), dashes=[30, 5, 10, 5],

label=‘Dashes set proactively’)

ax.legend(loc=‘lower right’)

plt.show()

如果一切正常,应该得到如下显示的图片:

此处输入图片的描述

这段程序来自官方的例程,只作为检验安装包之用。这个图片过于简单,也算不上精美。

3.2 测试xlrd扩展包

xlrd顾名思义,就是excel文件的后缀名.xl文件read的扩展包。这个包只能读取文件,不能写入。写入需要使用另外一个包。但是这个包,其实也能读取.xlsx文件。

从excel中读取数据的过程比较简单,首先从xlrd包导入open_workbook,然后打开excel文件,把每个sheet里的每一行每一列数据都读取出来即可。很明显,这是个循环过程。

from xlrd import open_workbook

x_data1=[]

y_data1=[]

wb = open_workbook(‘phase_detector.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

x_data1.append(values[0])

y_data1.append(values[1])

如果安装包没有问题,这段代码应该能打印出excel表中的数据内容。解释一下 这段代码:打开一个excel文件后,首先对文件内的sheet进行循环,这是最外层循环;在每个sheet内,进行第二次循环,行循环;在每行内,进行列循环,这是第三层循环。在最内层列循环内,取出行列值,复制到新建的values列表内,很明显,源数据有几列,values列表就有几个元素。我们例子中的excel文件有两列,分别对应“角度”和DC值。所以在列循环结束后,我们将取得的数据保存到x_data1和y_data1这两个列表中。

3.3 绘制图像V1.0

第一个版本的功能很简单,从excel中读取数据,然后绘制成图像。具体程序如下:

#!/usr/bin/python

#-- coding: utf-8 --

import matplotlib.pyplot as plt

import xlrd

from xlrd import open_workbook

x_data=[]

y_data=[]

x_volte=[]

temp=[]

wb = open_workbook(‘my_data.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

x_data.append(values[0])

y_data.append(values[1])

plt.plot(x_data, y_data, ‘bo-’,label=u"Phase curve",linewidth=1)

plt.title(u"TR14 phase detector")

plt.legend()

plt.xlabel(u"input-deg")

plt.ylabel(u"output-V")

plt.show()

print ‘over!’

程序简单,显示的效果也是丑到哭:

此处输入图片的描述

从excel中读取数据的程序,上面已经解释过了。这段代码后面的函数是matplotlib绘图的基本格式,此处的输入格式为:

plt.plot(x轴数据, y轴数据, 曲线类型,图例说明,曲线线宽)

图片顶部的名称,由这行语句定义:

plt.title(u"TR14 phase detector")

最后,使用这一语句使能显示:

plt.legend()

3.4 绘制图像V1.1

这个图只绘制了一个表格的数据,我们一共有三个表格。但是就这个一个已经够丑了。我们先来美化一下。首先,坐标轴的问题:横轴的0点对应着纵轴的8,这个明显不行。我们来移动一下坐标轴,使之0点重合:

#!/usr/bin/python

#-- coding: utf-8 --

import matplotlib.pyplot as plt

from pylab import *

import xlrd

from xlrd import open_workbook

x_data=[]

y_data=[]

x_volte=[]

temp=[]

wb = open_workbook(‘my_data.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

x_data.append(values[0])

y_data.append(values[1])

plt.plot(x_data, y_data, ‘bo-’,label=u"Phase curve",linewidth=1)

plt.title(u"TR14 phase detector")

plt.legend()

ax = gca()

ax.spines[‘right’].set_color(‘none’)

ax.spines[‘top’].set_color(‘none’)

ax.xaxis.set_ticks_position(‘bottom’)

ax.spines[‘bottom’].set_position((‘data’,0))

ax.yaxis.set_ticks_position(‘left’)

ax.spines[‘left’].set_position((‘data’,0))

plt.xlabel(u"input-deg")

plt.ylabel(u"output-V")

plt.show()

print ‘over!’

好的,移动坐标轴后,图片稍微顺眼了一点,我们也能明显的看出来,图像与横轴的交点大约在180度附近:

此处输入图片的描述

解释一下移动坐标轴的代码:我们要移动坐标轴,首先要把旧的坐标拆了。怎么拆呢?原图是上下左右四面都有边界刻度的图像,我们首先把右边界拆了不要了,使用语句:

ax.spines[‘right’].set_color(‘none’)

把右边界的颜色设置为不可见,右边界就拆掉了。同理,再把上边界拆掉:

ax.spines[‘top’].set_color(‘none’)

拆完之后,就只剩下我们关心的左边界和下边界了,这俩就是x轴和y轴。然后我们移动这两个轴,使他们的零点对应起来:

ax.xaxis.set_ticks_position(‘bottom’)

ax.spines[‘bottom’].set_position((‘data’,0))

ax.yaxis.set_ticks_position(‘left’)

ax.spines[‘left’].set_position((‘data’,0))

这样,就完成了坐标轴的移动。

3.5 绘制图像V1.2

我们能不能给图像过零点加个标记呢?显示的告诉看图者,过零点在哪,就免去看完图还得猜,要么就要问作报告的人。

#!/usr/bin/python

#-- coding: utf-8 --

import matplotlib.pyplot as plt

from pylab import *

import xlrd

from xlrd import open_workbook

x_data=[]

y_data=[]

x_volte=[]

temp=[]

wb = open_workbook(‘my_data.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

x_data.append(values[0])

y_data.append(values[1])

plt.plot(x_data, y_data, ‘bo-’,label=u"Phase curve",linewidth=1)

plt.annotate(‘zero point’, xy=(180,0), xytext=(60,3), arrowprops=dict(facecolor=‘black’, shrink=0.05),)

plt.title(u"TR14 phase detector")

plt.legend()

ax = gca()

ax.spines[‘right’].set_color(‘none’)

ax.spines[‘top’].set_color(‘none’)

ax.xaxis.set_ticks_position(‘bottom’)

ax.spines[‘bottom’].set_position((‘data’,0))

ax.yaxis.set_ticks_position(‘left’)

ax.spines[‘left’].set_position((‘data’,0))

plt.xlabel(u"input-deg")

plt.ylabel(u"output-V")

plt.show()

print ‘over!’

好的,加上标注的图片,显示效果是这样的:

此处输入图片的描述

标注的添加,使用这句语句:

plt.annotate(标注文字, 标注的数据点, 标注文字坐标, 箭头形状)

这其中,标注的数据点是我们感兴趣的,需要说明的数据,而标注文字坐标,需要我们根据效果进行调节,既不能遮挡原曲线,又要醒目。

3.6 绘制图像V1.3

我们把三组数据都画在这幅图上,方便对比,此外,再加上一组理想数据进行对照。这一次我们再做些改进,把横坐标的单位用Latex引擎显示;不光标记零点,把两边的非线性区也标记出来;

#!/usr/bin/python

#-- coding: utf-8 --

import numpy as np

import matplotlib.pyplot as plt

from xlrd import open_workbook

from pylab import *

x_data=[]

y_data=[]

x_data1=[]

y_data1=[]

x_data2=[]

y_data2=[]

x_data3=[]

y_data3=[]

x_volte=[]

temp=[]

plt.annotate(‘Close loop point’,size=18, xy=(180, 0.1), xycoords=‘data’,

xytext=(-100, 40), textcoords=‘offset points’,

arrowprops=dict(arrowstyle="->",connectionstyle=“arc3,rad=.2”)

)

plt.annotate(’ ', xy=(0, -0.1), xycoords=‘data’,

xytext=(200, -90), textcoords=‘offset points’,

arrowprops=dict(arrowstyle="->",connectionstyle=“arc3,rad=-.2”)

)

plt.annotate(‘Zero point in non-monotonic region’, size=18,xy=(360, 0), xycoords=‘data’,

xytext=(-290, -110), textcoords=‘offset points’,

arrowprops=dict(arrowstyle="->",connectionstyle=“arc3,rad=.2”)

)

wb = open_workbook(‘phase_detector.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

x_data1.append(values[0])

y_data1.append(values[1])

plt.plot(x_data1, y_data1, ‘g’,label=u"Original",linewidth=2)

wb = open_workbook(‘phase_detector2.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

x_data2.append(values[0])

y_data2.append(values[1])

plt.plot(x_data2, y_data2, ‘r’,label=u"Move the pullup resistor",linewidth=2)

wb = open_workbook(‘my_data.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

x_data.append(values[0])

y_data.append(values[1])

plt.plot(x_data, y_data, ‘b’,label=u"Faster D latch and XOR",linewidth=2)

for i in range(360):

x_data3.append(i)

y_data3.append((i-180)*0.052-0.092)

plt.plot(x_data3, y_data3, ‘c’,label=u"The Ideal Curve",linewidth=2)

#plt.title(u"2 \pi phase detector", fontproperties=font)

plt.title(u"2π2\pi2π phase detector",size=20)

plt.legend(loc=0)#显示label

#移动坐标轴代码

ax = gca()

ax.spines[‘right’].set_color(‘none’)

ax.spines[‘top’].set_color(‘none’)

ax.xaxis.set_ticks_position(‘bottom’)

ax.spines[‘bottom’].set_position((‘data’,0))

ax.yaxis.set_ticks_position(‘left’)

ax.spines[‘left’].set_position((‘data’,0))

plt.xlabel(u"ϕ/deg\phi/degϕ/deg",size=20)

plt.ylabel(u"DC/VDC/VDC/V",size=20)

plt.show()

print ‘over!’

看一下显示的效果:

此处输入图片的描述

Latex表示数学公式,使用$表示两个符号之间的内容是数学符号。圆周率就可以简单表示为表示两个符号之间的内容是数学符号。圆周率就可以简单表示为表示两个符号之间的内容是数学符号。圆周率就可以简单表示为\pi,简单到哭,显示效果却很好看。同样的,,简单到哭,显示效果却很好看。同样的,,简单到哭,显示效果却很好看。同样的,\phi$表示角度符号,书写和读音相近,很好记。

对于圆周率,角度公式这类数学符号,使用Latex来表示,是非常方便的。这张图比起上面的要好看得多了。但是,依然觉得还是有些丑。好像用平滑线画出来的图像,并不如用点线画出来的好看。而且点线更能反映实际的数据点。此外,我们的图像跟坐标轴重叠的地方,把坐标和数字都挡住了,看着不太美。

图中的理想曲线的数据,是根据电路原理纯计算出来的,要讲清楚需要较大篇幅,这里就不展开了,只是为了配合比较而用,这部分代码,大家知道即可:

for i in range(360):

x_data3.append(i)

y_data3.append((i-180)*0.052-0.092)

plt.plot(x_data3, y_data3, ‘c’,label=u"The Ideal Curve",linewidth=2)

3.7 绘制图像V1.4

我们再就上述问题,进行优化。优化的过程包括:改变横坐标的显示,使用弧度显示;优化图像与横坐标相交的部分,透明显示;增加网络标度。Talk is cheap, show me the code:

#!/usr/bin/python

#-- coding: utf-8 --

import numpy as np

import matplotlib.pyplot as plt

from xlrd import open_workbook

from pylab import *

x_data=[]

y_data=[]

x_data1=[]

y_data1=[]

x_data2=[]

y_data2=[]

x_data3=[]

y_data3=[]

x_volte=[]

temp=[]

plt.annotate(‘The favorite close loop point’,size=16, xy=(1, 0.1), xycoords=‘data’,

xytext=(-180, 40), textcoords=‘offset points’,

arrowprops=dict(arrowstyle="->",connectionstyle=“arc3,rad=.2”)

)

plt.annotate(’ ', xy=(0.02, -0.2), xycoords=‘data’,

xytext=(200, -90), textcoords=‘offset points’,

arrowprops=dict(arrowstyle="->",connectionstyle=“arc3,rad=-.2”)

)

plt.annotate(‘Zero point in non-monotonic region’, size=16,xy=(1.97, -0.3), xycoords=‘data’,

xytext=(-290, -110), textcoords=‘offset points’,

arrowprops=dict(arrowstyle="->",connectionstyle=“arc3,rad=.2”)

)

wb = open_workbook(‘phase_detector.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

#x_data1.append(values[0])

x_data1.append(values[0]/180.0)

y_data1.append(values[1])

plt.plot(x_data1, y_data1, ‘g–’,label=u"Original",linewidth=2)

wb = open_workbook(‘phase_detector2.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

#x_data2.append(values[0])

x_data2.append(values[0]/180.0)

y_data2.append(values[1])

plt.plot(x_data2, y_data2, ‘r-.’,label=u"Move the pullup resistor",linewidth=2)

wb = open_workbook(‘my_data.xlsx’)

for s in wb.sheets():

print ‘Sheet:’,s.name

for row in range(s.nrows):

print ‘the row is:’,row

values = []

for col in range(s.ncols):

values.append(s.cell(row,col).value)

print values

#x_data.append(values[0])

x_data.append(values[0]/180.0)

y_data.append(values[1])

plt.plot(x_data, y_data, ‘bo–’,label=u"Faster D latch and XOR",linewidth=2)

for i in range(360):

#x_data3.append(i)

x_data3.append(i/180.0)

y_data3.append((i-180)*0.052-0.092)

plt.plot(x_data3, y_data3, ‘c’,label=u"The Ideal Curve",linewidth=2)

plt.title(u"2π2\pi2π phase detector",size=20)

plt.legend(loc=0)#显示label

#移动坐标轴代码

ax = gca()

ax.spines[‘right’].set_color(‘none’)

ax.spines[‘top’].set_color(‘none’)

ax.xaxis.set_ticks_position(‘bottom’)

ax.spines[‘bottom’].set_position((‘data’,0))

ax.yaxis.set_ticks_position(‘left’)

ax.spines[‘left’].set_position((‘data’,0))

plt.xlabel(u"ϕ/rad\phi/radϕ/rad",size=20)#角度单位为pi

plt.ylabel(u"DC/VDC/VDC/V",size=20)

plt.xticks([0, 0.5, 1, 1.5, 2],[r’000’, r’π/2\pi/2π/2’, r’π\piπ’, r’1.5π1.5\pi1.5π’, r’2π2\pi2π’],size=16)

for label in ax.get_xticklabels() + ax.get_yticklabels():

#label.set_fontsize(16)

label.set_bbox(dict(facecolor=‘white’, edgecolor=‘None’, alpha=0.65 ))

plt.grid(True)

plt.show()

print ‘over!’

最终,这张图像的显示效果如下:

此处输入图片的描述

与我们最开始那张图比起来,是不是有种脱胎换骨的感觉?这其中,对图像与坐标轴相交的部分,做了透明化处理,代码为:

for label in ax.get_xticklabels() + ax.get_yticklabels():

#label.set_fontsize(16)

label.set_bbox(dict(facecolor=‘white’, edgecolor=‘None’, alpha=0.65 ))

透明度由其中的参数alpha=0.65控制,如果想更透明,就把这个数改到更小,0代表完全透明,1代表不透明。

而改变横轴坐标显示方式的代码为:

plt.xticks([0, 0.5, 1, 1.5, 2],[r’000’, r’π/2\pi/2π/2’, r’π\piπ’, r’1.5π1.5\pi1.5π’, r’2π2\pi2π’],size=16)

这里直接手动指定x轴的标度。依然是使用Latex引擎来表示数学公式。

四、实验总结

这节课使用python的绘图包matplotlib绘制了一副图像。图像的数据来源于excel数据表。与使用数据表画图相比,通过程序控制绘图,得到了更加灵活和精细的控制,最终绘制除了一幅精美的图像。

五、课后习题

对比每个版本程序的不同,找出优化部分的程序;修改数据来源,从txt或者word中读取数据,绘制图像;将以前使用excel绘制的图像,改用python重新绘制一遍。

http://www.jmfq.cn/news/4901581.html

相关文章:

  • 一个小型网站设计/软文范例
  • 淄博天一建设项目招标代理有限公司网站/百度网首页登录入口
  • 网站策划怎么样/软文范文200字
  • 湖南专业做网站公司/南宁seo收费
  • 群晖安装wordpress/seo公司服务
  • 我的世界做壁纸的网站/seo排名优化培训网站
  • 建立网站可以赚钱吗?/百度搜索热度指数
  • 广州市增城区建设局网站/seo扣费系统源码
  • 专业群建设 网站/小广告网站
  • 国外做外贸哪个网站好些/今天的新闻有哪些
  • 智慧团建网站什么时候维护好/seo免费优化网站
  • 建网站首选公司/百度导航怎么下载
  • 旅游网站管理系统论文/淄博网站优化
  • 什么是网络营销?网络营销有哪些特点?/宁波seo网络推广代理公司
  • 怎么用自己电脑做服务器发布网站吗/城市更新论坛破圈
  • vps 香港/seo怎么收费
  • 潍坊网站建设 潍坊做网站/企业网站建设需求分析
  • 四川做网站设计公司价格/青岛网站优化公司哪家好
  • 网站开发与设计多少钱一个网站/品牌线上推广方式
  • 网站建设征求意见分析报告/莱阳seo排名
  • 濮阳做网站/百度运营推广
  • 南充房产网官网/广州seo公司品牌
  • 珠宝网站模板免费下载/做了5天游戏推广被抓了
  • 网页设计鉴赏/西安网站seo技术厂家
  • 佛山网站制作维护/企业网站建设的一般要素
  • 无锡网站建设外贸/网店推广方式有哪些
  • 课程资源网站教建设现状分析/软文广告100字
  • 用数据库做学校网站/网站排名优化制作
  • 糗事百科网站源码/网络推广哪个平台效果最好
  • asp.net做网站视频/今日头条国际新闻